Author: Gabriele Inglese
Publisher:
ISBN:
Category : Differential equations, Partial
Languages : en
Pages : 24
Book Description
Identification of the Drift Coefficient of a Fokker-Planck Equation from the Moment Discretization of Its Stationary Solution
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1236
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1236
Book Description
Applied Stochastic Differential Equations
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Stochastic Processes and Applications
Author: Grigorios A. Pavliotis
Publisher: Springer
ISBN: 1493913239
Category : Mathematics
Languages : en
Pages : 345
Book Description
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Publisher: Springer
ISBN: 1493913239
Category : Mathematics
Languages : en
Pages : 345
Book Description
This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Gradient Flows
Author: Luigi Ambrosio
Publisher: Springer Science & Business Media
ISBN: 376438722X
Category : Mathematics
Languages : en
Pages : 333
Book Description
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
Publisher: Springer Science & Business Media
ISBN: 376438722X
Category : Mathematics
Languages : en
Pages : 333
Book Description
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.
Fokker-Planck-Kolmogorov Equations
Author: Vladimir I. Bogachev
Publisher: American Mathematical Soc.
ISBN: 1470425580
Category : Mathematics
Languages : en
Pages : 495
Book Description
This book gives an exposition of the principal concepts and results related to second order elliptic and parabolic equations for measures, the main examples of which are Fokker-Planck-Kolmogorov equations for stationary and transition probabilities of diffusion processes. Existence and uniqueness of solutions are studied along with existence and Sobolev regularity of their densities and upper and lower bounds for the latter. The target readership includes mathematicians and physicists whose research is related to diffusion processes as well as elliptic and parabolic equations.
Publisher: American Mathematical Soc.
ISBN: 1470425580
Category : Mathematics
Languages : en
Pages : 495
Book Description
This book gives an exposition of the principal concepts and results related to second order elliptic and parabolic equations for measures, the main examples of which are Fokker-Planck-Kolmogorov equations for stationary and transition probabilities of diffusion processes. Existence and uniqueness of solutions are studied along with existence and Sobolev regularity of their densities and upper and lower bounds for the latter. The target readership includes mathematicians and physicists whose research is related to diffusion processes as well as elliptic and parabolic equations.
The Fokker-Planck Equation
Author: Hannes Risken
Publisher: Springer Science & Business Media
ISBN: 3642615449
Category : Mathematics
Languages : en
Pages : 486
Book Description
This is the first textbook to include the matrix continued-fraction method, which is very effective in dealing with simple Fokker-Planck equations having two variables. Other methods covered are the simulation method, the eigen-function expansion, numerical integration, and the variational method. Each solution is applied to the statistics of a simple laser model and to Brownian motion in potentials. The whole is rounded off with a supplement containing a short review of new material together with some recent references. This new study edition will prove to be very useful for graduate students in physics, chemical physics, and electrical engineering, as well as for research workers in these fields.
Publisher: Springer Science & Business Media
ISBN: 3642615449
Category : Mathematics
Languages : en
Pages : 486
Book Description
This is the first textbook to include the matrix continued-fraction method, which is very effective in dealing with simple Fokker-Planck equations having two variables. Other methods covered are the simulation method, the eigen-function expansion, numerical integration, and the variational method. Each solution is applied to the statistics of a simple laser model and to Brownian motion in potentials. The whole is rounded off with a supplement containing a short review of new material together with some recent references. This new study edition will prove to be very useful for graduate students in physics, chemical physics, and electrical engineering, as well as for research workers in these fields.
Stochastic Processes in Physics and Chemistry
Author: N.G. Van Kampen
Publisher: Elsevier
ISBN: 0080571387
Category : Science
Languages : en
Pages : 482
Book Description
This new edition of Van Kampen's standard work has been completely revised and updated. Three major changes have also been made. The Langevin equation receives more attention in a separate chapter in which non-Gaussian and colored noise are introduced. Another additional chapter contains old and new material on first-passage times and related subjects which lay the foundation for the chapter on unstable systems. Finally a completely new chapter has been written on the quantum mechanical foundations of noise. The references have also been expanded and updated.
Publisher: Elsevier
ISBN: 0080571387
Category : Science
Languages : en
Pages : 482
Book Description
This new edition of Van Kampen's standard work has been completely revised and updated. Three major changes have also been made. The Langevin equation receives more attention in a separate chapter in which non-Gaussian and colored noise are introduced. Another additional chapter contains old and new material on first-passage times and related subjects which lay the foundation for the chapter on unstable systems. Finally a completely new chapter has been written on the quantum mechanical foundations of noise. The references have also been expanded and updated.
Numerical Solution of Stochastic Differential Equations
Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666
Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666
Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP
Reaction Rate Theory and Rare Events
Author: Baron Peters
Publisher: Elsevier
ISBN: 0444594701
Category : Technology & Engineering
Languages : en
Pages : 636
Book Description
Reaction Rate Theory and Rare Events bridges the historical gap between these subjects because the increasingly multidisciplinary nature of scientific research often requires an understanding of both reaction rate theory and the theory of other rare events. The book discusses collision theory, transition state theory, RRKM theory, catalysis, diffusion limited kinetics, mean first passage times, Kramers theory, Grote-Hynes theory, transition path theory, non-adiabatic reactions, electron transfer, and topics from reaction network analysis. It is an essential reference for students, professors and scientists who use reaction rate theory or the theory of rare events. In addition, the book discusses transition state search algorithms, tunneling corrections, transmission coefficients, microkinetic models, kinetic Monte Carlo, transition path sampling, and importance sampling methods. The unified treatment in this book explains why chemical reactions and other rare events, while having many common theoretical foundations, often require very different computational modeling strategies. - Offers an integrated approach to all simulation theories and reaction network analysis, a unique approach not found elsewhere - Gives algorithms in pseudocode for using molecular simulation and computational chemistry methods in studies of rare events - Uses graphics and explicit examples to explain concepts - Includes problem sets developed and tested in a course range from pen-and-paper theoretical problems, to computational exercises
Publisher: Elsevier
ISBN: 0444594701
Category : Technology & Engineering
Languages : en
Pages : 636
Book Description
Reaction Rate Theory and Rare Events bridges the historical gap between these subjects because the increasingly multidisciplinary nature of scientific research often requires an understanding of both reaction rate theory and the theory of other rare events. The book discusses collision theory, transition state theory, RRKM theory, catalysis, diffusion limited kinetics, mean first passage times, Kramers theory, Grote-Hynes theory, transition path theory, non-adiabatic reactions, electron transfer, and topics from reaction network analysis. It is an essential reference for students, professors and scientists who use reaction rate theory or the theory of rare events. In addition, the book discusses transition state search algorithms, tunneling corrections, transmission coefficients, microkinetic models, kinetic Monte Carlo, transition path sampling, and importance sampling methods. The unified treatment in this book explains why chemical reactions and other rare events, while having many common theoretical foundations, often require very different computational modeling strategies. - Offers an integrated approach to all simulation theories and reaction network analysis, a unique approach not found elsewhere - Gives algorithms in pseudocode for using molecular simulation and computational chemistry methods in studies of rare events - Uses graphics and explicit examples to explain concepts - Includes problem sets developed and tested in a course range from pen-and-paper theoretical problems, to computational exercises