Identification and Characterization of a Yeast Protein that Severs Actin Filaments

Identification and Characterization of a Yeast Protein that Severs Actin Filaments PDF Author: Anne Lee Moon
Publisher:
ISBN:
Category :
Languages : en
Pages : 472

Get Book Here

Book Description

Identification and Characterization of a Yeast Protein that Severs Actin Filaments

Identification and Characterization of a Yeast Protein that Severs Actin Filaments PDF Author: Anne Lee Moon
Publisher:
ISBN:
Category :
Languages : en
Pages : 472

Get Book Here

Book Description


Molecular Biology of the Cell

Molecular Biology of the Cell PDF Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0

Get Book Here

Book Description


Identification and Characterization of Proteins Important for Actin Cytoskeletal Function in the Yeast Saccharomyces Cerevisiae

Identification and Characterization of Proteins Important for Actin Cytoskeletal Function in the Yeast Saccharomyces Cerevisiae PDF Author: Matthew Dunbar Welch
Publisher:
ISBN:
Category :
Languages : en
Pages : 308

Get Book Here

Book Description


The Plant Cytoskeleton

The Plant Cytoskeleton PDF Author: Bo Liu
Publisher: Springer Science & Business Media
ISBN: 1441909877
Category : Science
Languages : en
Pages : 333

Get Book Here

Book Description
Plant cells house highly dynamic cytoskeletal networks of microtubules and actin microfilaments. They constantly undergo remodeling to fulfill their roles in supporting cell division, enlargement, and differentiation. Following early studies on structural aspects of the networks, recent breakthroughs have connected them with more and more intracellular events essential for plant growth and development. Advanced technologies in cell biology (live-cell imaging in particular), molecular genetics, genomics, and proteomics have revolutionized this field of study. Stories summarized in this book may inspire enthusiastic scientists to pursue new directions toward understanding functions of the plant cytoskeleton. The Plant Cytoskeleton is divided into three sections: 1) Molecular Basis of the Plant Cytoskeleton; 2) Cytoskeletal Reorganization in Plant Cell Division; and 3) The Cytoskeleton in Plant Growth and Development. This book is aimed at serving as a resource for anyone who wishes to learn about the plant cytoskeleton beyond ordinary textbooks.

Actin-based Motility

Actin-based Motility PDF Author: Marie-France Carlier
Publisher: Springer Science & Business Media
ISBN: 904819301X
Category : Medical
Languages : en
Pages : 434

Get Book Here

Book Description
Since the discovery of actin by Straub in the 1950’s and the pioneering work of Oosawa on actin self-assembly in helical laments in the 1960’s, many books and conference proceedings have been published. As one of the most essential p- teins in life, essential for movement in organisms rangingfrom bacteria to higher eukaryotes, it is no surprise that actin has fascinated generations of scientists from many different elds. Actin can be considered as a “living treasure” of biology; the kinetics and thermodynamics of self-assembly, the dissipative nature of actin po- merization, the molecular interactions of monomeric and polymerized actin with regulators, the mechanical properties of actin gels, and more recently the force p- ducing motile and morphogenetic processes organized by the actin nanomachine in response to signaling, are all milestones in actin research. Discoveries that directly derive from and provide deeper insight into the fundamental properties of actin are constantly being made, making actin an ever appealing research molecule. At the same time, the explosion in new technologies and techniques in biological sciences has served to attract researchers from an expanding number of disciplines, to study actin. This book presents the latest developments of these new multiscale approaches of force and movement powered by self-assembly processes, with the hope to opening our perspectives on the many areas of actin-based motility research.

Dyneins

Dyneins PDF Author: Stephen M. King
Publisher: Academic Press
ISBN: 0123820049
Category : Science
Languages : en
Pages : 657

Get Book Here

Book Description
Research on dyneins has a direct impact on human diseases, such as viruses and cancer. With an accompanying website showing over 100 streaming videos of cell dynamic behavior for best comprehension of material, Dynein: Structure, Biology and Disease is the only reference covering the structure, biology and application of dynein research to human disease. From bench to bedside, Dynein: Structure, Biology and Disease offers research on fundamental cellular processes to researchers and clinicians across developmental biology, cell biology, molecular biology, biophysics, biomedicine, genetics and medicine. Broad-based up-to-date resource for the dynein class of molecular motors Chapters written by world experts in their topics Numerous well-illustrated figures and tables included to complement the text, imparting comprehensive information on dynein composition, interactions, and other fundamental features

The Septins

The Septins PDF Author: Peter A. Hall
Publisher: John Wiley & Sons
ISBN: 9780470779699
Category : Science
Languages : en
Pages : 380

Get Book Here

Book Description
"The authors represent most of the key figures and the work and the book as a whole is an essential reference for the newcomer or specialist in this area and for any student of eukaryotic cell structure and function. This is an important and wonderful reference." –Microbiology Today, May 2009 Septins are an evolutionarily conserved group of GTP-binding and filament-forming proteins that were originally discovered in yeast. Once the preserve of a small band of yeast biologists, the field has grown rapidly in the past few years and now encompasses the whole of animal and fungal biology. Furthermore, septins are nowadays recognized to be involved in a variety of disease processes from neoplasia to neurodegenerative conditions. This book comprehensively examines the septin gene family and their proteins, providing those new to this research area with a detailed and wide ranging introduction to septin biology. It starts with a unique historical perspective on the development of the field, from its beginnings in the screen for cell division mutants by the Nobel Laureate Lee Hartwell. The evolution of the septin gene family then forms a basis for consideration of the biochemistry and functions of septins in yeast and other model organisms including C. elegans and Drosophila. A major part of the book considers the diversity of septins in mammals, their functions and properties as well as their involvement in normal and abnormal cellular states, followed by a speculative overview from the editors of the key questions in septin research and of where the field may be headed. In addition, several appendices summarise important information for those in, or just entering, the field, e.g. nomenclature and septin and septin-like sequences. This book is an essential source of reference material for researchers in septin biology, cell biology, genetics and medicine, in particular pathology, including areas of neurobiology, oncology, infectious disease and developmental biology.

Prokaryotic Cytoskeletons

Prokaryotic Cytoskeletons PDF Author: Jan Löwe
Publisher: Springer
ISBN: 331953047X
Category : Science
Languages : en
Pages : 457

Get Book Here

Book Description
This book describes the structures and functions of active protein filaments, found in bacteria and archaea, and now known to perform crucial roles in cell division and intra-cellular motility, as well as being essential for controlling cell shape and growth. These roles are possible because the cytoskeletal and cytomotive filaments provide long range order from small subunits. Studies of these filaments are therefore of central importance to understanding prokaryotic cell biology. The wide variation in subunit and polymer structure and its relationship with the range of functions also provide important insights into cell evolution, including the emergence of eukaryotic cells. Individual chapters, written by leading researchers, review the great advances made in the past 20-25 years, and still ongoing, to discover the architectures, dynamics and roles of filaments found in relevant model organisms. Others describe one of the families of dynamic filaments found in many species. The most common types of filament are deeply related to eukaryotic cytoskeletal proteins, notably actin and tubulin that polymerise and depolymerise under the control of nucleotide hydrolysis. Related systems are found to perform a variety of roles, depending on the organisms. Surprisingly, prokaryotes all lack the molecular motors associated with eukaryotic F-actin and microtubules. Archaea, but not bacteria, also have active filaments related to the eukaryotic ESCRT system. Non-dynamic fibres, including intermediate filament-like structures, are known to occur in some bacteria.. Details of known filament structures are discussed and related to what has been established about their molecular mechanisms, including current controversies. The final chapter covers the use of some of these dynamic filaments in Systems Biology research. The level of information in all chapters is suitable both for active researchers and for advanced students in courses involving bacterial or archaeal physiology, molecular microbiology, structural cell biology, molecular motility or evolution. Chapter 3 of this book is open access under a CC BY 4.0 license.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 868

Get Book Here

Book Description


Yeast

Yeast PDF Author: Horst Feldmann
Publisher: John Wiley & Sons
ISBN: 3527659196
Category : Science
Languages : en
Pages : 1

Get Book Here

Book Description
Finally, a stand-alone, all-inclusive textbook on yeast biology. Based on the feedback resulting from his highly successful monograph, Horst Feldmann has totally rewritten he contents to produce a comprehensive, student-friendly textbook on the topic. The scope has been widened, with almost double the content so as to include all aspects of yeast biology, from genetics via cell biology right up to biotechnology applications. The cell and molecular biology sections have been vastly expanded, while information on other yeast species has been added, with contributions from additional authors. Naturally, the illustrations are in full color throughout, and the book is backed by a complimentary website. The resulting textbook caters to the needs of an increasing number of students in biomedical research, cell and molecular biology, microbiology and biotechnology who end up using yeast as an important tool or model organism.