Author: Teuvo Kohonen
Publisher: Springer Science & Business Media
ISBN: 3642569277
Category : Science
Languages : en
Pages : 514
Book Description
The Self-Organizing Map (SOM), with its variants, is the most popular artificial neural network algorithm in the unsupervised learning category. About 4000 research articles on it have appeared in the open literature, and many industrial projects use the SOM as a tool for solving hard real world problems. Many fields of science have adopted the SOM as a standard analytical tool: statistics, signal processing, control theory, financial analyses, experimental physics, chemistry and medicine. This new edition includes a survey of over 2000 contemporary studies to cover the newest results. Case examples are provided with detailed formulae, illustrations, and tables. Further, a new chapter on software tools for SOM has been included whilst other chapters have been extended and reorganised.
Self-Organizing Maps
Author: Teuvo Kohonen
Publisher: Springer Science & Business Media
ISBN: 3642569277
Category : Science
Languages : en
Pages : 514
Book Description
The Self-Organizing Map (SOM), with its variants, is the most popular artificial neural network algorithm in the unsupervised learning category. About 4000 research articles on it have appeared in the open literature, and many industrial projects use the SOM as a tool for solving hard real world problems. Many fields of science have adopted the SOM as a standard analytical tool: statistics, signal processing, control theory, financial analyses, experimental physics, chemistry and medicine. This new edition includes a survey of over 2000 contemporary studies to cover the newest results. Case examples are provided with detailed formulae, illustrations, and tables. Further, a new chapter on software tools for SOM has been included whilst other chapters have been extended and reorganised.
Publisher: Springer Science & Business Media
ISBN: 3642569277
Category : Science
Languages : en
Pages : 514
Book Description
The Self-Organizing Map (SOM), with its variants, is the most popular artificial neural network algorithm in the unsupervised learning category. About 4000 research articles on it have appeared in the open literature, and many industrial projects use the SOM as a tool for solving hard real world problems. Many fields of science have adopted the SOM as a standard analytical tool: statistics, signal processing, control theory, financial analyses, experimental physics, chemistry and medicine. This new edition includes a survey of over 2000 contemporary studies to cover the newest results. Case examples are provided with detailed formulae, illustrations, and tables. Further, a new chapter on software tools for SOM has been included whilst other chapters have been extended and reorganised.
Handbook Of Character Recognition And Document Image Analysis
Author: Horst Bunke
Publisher: World Scientific
ISBN: 9814500380
Category : Computers
Languages : en
Pages : 851
Book Description
Optical character recognition and document image analysis have become very important areas with a fast growing number of researchers in the field. This comprehensive handbook with contributions by eminent experts, presents both the theoretical and practical aspects at an introductory level wherever possible.
Publisher: World Scientific
ISBN: 9814500380
Category : Computers
Languages : en
Pages : 851
Book Description
Optical character recognition and document image analysis have become very important areas with a fast growing number of researchers in the field. This comprehensive handbook with contributions by eminent experts, presents both the theoretical and practical aspects at an introductory level wherever possible.
Hardware Implementation of Intelligent Systems
Author: Horia-Nicolai Teodorescu
Publisher: Physica
ISBN: 379081816X
Category : Computers
Languages : en
Pages : 287
Book Description
Intelligent systems are now being used more commonly than in the past. These involve cognitive, evolving and artificial-life, robotic, and decision making systems, to name a few. Due to the tremendous speed of development, on both fundamental and technological levels, it is virtually impossible to offer an up-to-date, yet comprehensive overview of this field. Nevertheless, the need for a volume presenting recent developments and trends in this domain is huge, and the demand for such a volume is continually increasing in industrial and academic engineering 1 communities. Although there are a few volumes devoted to similar issues , none offer a comprehensive coverage of the field; moreover they risk rapidly becoming obsolete. The editors of this volume cannot pretend to fill such a large gap. However, it is the editors' intention to fill a significant part of this gap. A comprehensive coverage of the field should include topics such as neural networks, fuzzy systems, neuro-fuzzy systems, genetic algorithms, evolvable hardware, cellular automata-based systems, and various types of artificial life-system implementations, including autonomous robots. In this volume, we have focused on the first five topics listed above. The volume is composed of four parts, each part being divided into chapters, with the exception of part 4. In Part 1, the topics of "Evolvable Hardware and GAs" are addressed. In Chapter 1, "Automated Design Synthesis and Partitioning for Adaptive Reconfigurable Hardware", Ranga Vemuri and co-authors present state-of-the-art adaptive architectures, their classification, and their applications.
Publisher: Physica
ISBN: 379081816X
Category : Computers
Languages : en
Pages : 287
Book Description
Intelligent systems are now being used more commonly than in the past. These involve cognitive, evolving and artificial-life, robotic, and decision making systems, to name a few. Due to the tremendous speed of development, on both fundamental and technological levels, it is virtually impossible to offer an up-to-date, yet comprehensive overview of this field. Nevertheless, the need for a volume presenting recent developments and trends in this domain is huge, and the demand for such a volume is continually increasing in industrial and academic engineering 1 communities. Although there are a few volumes devoted to similar issues , none offer a comprehensive coverage of the field; moreover they risk rapidly becoming obsolete. The editors of this volume cannot pretend to fill such a large gap. However, it is the editors' intention to fill a significant part of this gap. A comprehensive coverage of the field should include topics such as neural networks, fuzzy systems, neuro-fuzzy systems, genetic algorithms, evolvable hardware, cellular automata-based systems, and various types of artificial life-system implementations, including autonomous robots. In this volume, we have focused on the first five topics listed above. The volume is composed of four parts, each part being divided into chapters, with the exception of part 4. In Part 1, the topics of "Evolvable Hardware and GAs" are addressed. In Chapter 1, "Automated Design Synthesis and Partitioning for Adaptive Reconfigurable Hardware", Ranga Vemuri and co-authors present state-of-the-art adaptive architectures, their classification, and their applications.
Advances in Self-Organising Maps
Author: Nigel Allinson
Publisher: Springer Science & Business Media
ISBN: 1447107152
Category : Mathematics
Languages : en
Pages : 299
Book Description
Publisher: Springer Science & Business Media
ISBN: 1447107152
Category : Mathematics
Languages : en
Pages : 299
Book Description
Second-Order Methods for Neural Networks
Author: Adrian J. Shepherd
Publisher: Springer Science & Business Media
ISBN: 1447109538
Category : Computers
Languages : en
Pages : 156
Book Description
About This Book This book is about training methods - in particular, fast second-order training methods - for multi-layer perceptrons (MLPs). MLPs (also known as feed-forward neural networks) are the most widely-used class of neural network. Over the past decade MLPs have achieved increasing popularity among scientists, engineers and other professionals as tools for tackling a wide variety of information processing tasks. In common with all neural networks, MLPsare trained (rather than programmed) to carryout the chosen information processing function. Unfortunately, the (traditional' method for trainingMLPs- the well-knownbackpropagation method - is notoriously slow and unreliable when applied to many prac tical tasks. The development of fast and reliable training algorithms for MLPsis one of the most important areas ofresearch within the entire field of neural computing. The main purpose of this book is to bring to a wider audience a range of alternative methods for training MLPs, methods which have proved orders of magnitude faster than backpropagation when applied to many training tasks. The book also addresses the well-known (local minima' problem, and explains ways in which fast training methods can be com bined with strategies for avoiding (or escaping from) local minima. All the methods described in this book have a strong theoretical foundation, drawing on such diverse mathematical fields as classical optimisation theory, homotopic theory and stochastic approximation theory.
Publisher: Springer Science & Business Media
ISBN: 1447109538
Category : Computers
Languages : en
Pages : 156
Book Description
About This Book This book is about training methods - in particular, fast second-order training methods - for multi-layer perceptrons (MLPs). MLPs (also known as feed-forward neural networks) are the most widely-used class of neural network. Over the past decade MLPs have achieved increasing popularity among scientists, engineers and other professionals as tools for tackling a wide variety of information processing tasks. In common with all neural networks, MLPsare trained (rather than programmed) to carryout the chosen information processing function. Unfortunately, the (traditional' method for trainingMLPs- the well-knownbackpropagation method - is notoriously slow and unreliable when applied to many prac tical tasks. The development of fast and reliable training algorithms for MLPsis one of the most important areas ofresearch within the entire field of neural computing. The main purpose of this book is to bring to a wider audience a range of alternative methods for training MLPs, methods which have proved orders of magnitude faster than backpropagation when applied to many training tasks. The book also addresses the well-known (local minima' problem, and explains ways in which fast training methods can be com bined with strategies for avoiding (or escaping from) local minima. All the methods described in this book have a strong theoretical foundation, drawing on such diverse mathematical fields as classical optimisation theory, homotopic theory and stochastic approximation theory.
Law of the Internet
Author: F. Lawrence Street
Publisher: Aspen Publishers Online
ISBN: 0735575592
Category : Computer networks
Languages : en
Pages : 2368
Book Description
Publisher: Aspen Publishers Online
ISBN: 0735575592
Category : Computer networks
Languages : en
Pages : 2368
Book Description
Optimization Techniques
Author: Cornelius T. Leondes
Publisher: Elsevier
ISBN: 0080551351
Category : Computers
Languages : en
Pages : 423
Book Description
Optimization Techniques is a unique reference source to a diverse array of methods for achieving optimization, and includes both systems structures and computational methods. The text devotes broad coverage toa unified view of optimal learning, orthogonal transformation techniques, sequential constructive techniques, fast back propagation algorithms, techniques for neural networks with nonstationary or dynamic outputs, applications to constraint satisfaction,optimization issues and techniques for unsupervised learning neural networks, optimum Cerebellar Model of Articulation Controller systems, a new statistical theory of optimum neural learning, and the role of the Radial Basis Function in nonlinear dynamical systems.This volume is useful for practitioners, researchers, and students in industrial, manufacturing, mechanical, electrical, and computer engineering. Provides in-depth treatment of theoretical contributions to optimal learning for neural network systems Offers a comprehensive treatment of orthogonal transformation techniques for the optimization of neural network systems Includes illustrative examples and comprehensive treatment of sequential constructive techniques for optimization of neural network systems Presents a uniquely comprehensive treatment of the highly effective fast back propagation algorithms for the optimization of neural network systems Treats, in detail, optimization techniques for neural network systems with nonstationary or dynamic inputs Covers optimization techniques and applications of neural network systems in constraint satisfaction
Publisher: Elsevier
ISBN: 0080551351
Category : Computers
Languages : en
Pages : 423
Book Description
Optimization Techniques is a unique reference source to a diverse array of methods for achieving optimization, and includes both systems structures and computational methods. The text devotes broad coverage toa unified view of optimal learning, orthogonal transformation techniques, sequential constructive techniques, fast back propagation algorithms, techniques for neural networks with nonstationary or dynamic outputs, applications to constraint satisfaction,optimization issues and techniques for unsupervised learning neural networks, optimum Cerebellar Model of Articulation Controller systems, a new statistical theory of optimum neural learning, and the role of the Radial Basis Function in nonlinear dynamical systems.This volume is useful for practitioners, researchers, and students in industrial, manufacturing, mechanical, electrical, and computer engineering. Provides in-depth treatment of theoretical contributions to optimal learning for neural network systems Offers a comprehensive treatment of orthogonal transformation techniques for the optimization of neural network systems Includes illustrative examples and comprehensive treatment of sequential constructive techniques for optimization of neural network systems Presents a uniquely comprehensive treatment of the highly effective fast back propagation algorithms for the optimization of neural network systems Treats, in detail, optimization techniques for neural network systems with nonstationary or dynamic inputs Covers optimization techniques and applications of neural network systems in constraint satisfaction
Visual Explorations in Finance
Author: Guido Deboeck
Publisher: Springer Science & Business Media
ISBN: 1447139135
Category : Mathematics
Languages : en
Pages : 306
Book Description
Edited by Guido Deboeck, a leading exponent in the use of computation intelligence methods in finance and economic forecasting, and the originator of SOM, Teuvo Kohonen. An 8-page color section makes this book unique, colorful and exciting to read. Each chapter contains exercises and solutions, perfectly suited to aid self-study.
Publisher: Springer Science & Business Media
ISBN: 1447139135
Category : Mathematics
Languages : en
Pages : 306
Book Description
Edited by Guido Deboeck, a leading exponent in the use of computation intelligence methods in finance and economic forecasting, and the originator of SOM, Teuvo Kohonen. An 8-page color section makes this book unique, colorful and exciting to read. Each chapter contains exercises and solutions, perfectly suited to aid self-study.
Shape, Structure And Pattern Recognition
Author: Horst Bunke
Publisher: World Scientific
ISBN: 9814549347
Category :
Languages : en
Pages : 458
Book Description
The book is an extensive compilation of the papers presented at the IAPR International Workshop on Structural and Syntactic Pattern Recognition SSPR'94. It includes a preface by Professor Herbert Freeman, who is the recipient of the IAPR King Sun Fu Award for 1994. The book is divided into four parts and covers state-of-the art topics related to a variety of aspects of pattern recognition.
Publisher: World Scientific
ISBN: 9814549347
Category :
Languages : en
Pages : 458
Book Description
The book is an extensive compilation of the papers presented at the IAPR International Workshop on Structural and Syntactic Pattern Recognition SSPR'94. It includes a preface by Professor Herbert Freeman, who is the recipient of the IAPR King Sun Fu Award for 1994. The book is divided into four parts and covers state-of-the art topics related to a variety of aspects of pattern recognition.
Pulsed Neural Networks
Author: Wolfgang Maass
Publisher: MIT Press
ISBN: 9780262632218
Category : Computers
Languages : en
Pages : 414
Book Description
Most practical applications of artificial neural networks are based on a computational model involving the propagation of continuous variables from one processing unit to the next. In recent years, data from neurobiological experiments have made it increasingly clear that biological neural networks, which communicate through pulses, use the timing of the pulses to transmit information and perform computation. This realization has stimulated significant research on pulsed neural networks, including theoretical analyses and model development, neurobiological modeling, and hardware implementation. This book presents the complete spectrum of current research in pulsed neural networks and includes the most important work from many of the key scientists in the field. Terrence J. Sejnowski's foreword, "Neural Pulse Coding," presents an overview of the topic. The first half of the book consists of longer tutorial articles spanning neurobiology, theory, algorithms, and hardware. The second half contains a larger number of shorter research chapters that present more advanced concepts. The contributors use consistent notation and terminology throughout the book. Contributors Peter S. Burge, Stephen R. Deiss, Rodney J. Douglas, John G. Elias, Wulfram Gerstner, Alister Hamilton, David Horn, Axel Jahnke, Richard Kempter, Wolfgang Maass, Alessandro Mortara, Alan F. Murray, David P. M. Northmore, Irit Opher, Kostas A. Papathanasiou, Michael Recce, Barry J. P. Rising, Ulrich Roth, Tim Schönauer, Terrence J. Sejnowski, John Shawe-Taylor, Max R. van Daalen, J. Leo van Hemmen, Philippe Venier, Hermann Wagner, Adrian M. Whatley, Anthony M. Zador
Publisher: MIT Press
ISBN: 9780262632218
Category : Computers
Languages : en
Pages : 414
Book Description
Most practical applications of artificial neural networks are based on a computational model involving the propagation of continuous variables from one processing unit to the next. In recent years, data from neurobiological experiments have made it increasingly clear that biological neural networks, which communicate through pulses, use the timing of the pulses to transmit information and perform computation. This realization has stimulated significant research on pulsed neural networks, including theoretical analyses and model development, neurobiological modeling, and hardware implementation. This book presents the complete spectrum of current research in pulsed neural networks and includes the most important work from many of the key scientists in the field. Terrence J. Sejnowski's foreword, "Neural Pulse Coding," presents an overview of the topic. The first half of the book consists of longer tutorial articles spanning neurobiology, theory, algorithms, and hardware. The second half contains a larger number of shorter research chapters that present more advanced concepts. The contributors use consistent notation and terminology throughout the book. Contributors Peter S. Burge, Stephen R. Deiss, Rodney J. Douglas, John G. Elias, Wulfram Gerstner, Alister Hamilton, David Horn, Axel Jahnke, Richard Kempter, Wolfgang Maass, Alessandro Mortara, Alan F. Murray, David P. M. Northmore, Irit Opher, Kostas A. Papathanasiou, Michael Recce, Barry J. P. Rising, Ulrich Roth, Tim Schönauer, Terrence J. Sejnowski, John Shawe-Taylor, Max R. van Daalen, J. Leo van Hemmen, Philippe Venier, Hermann Wagner, Adrian M. Whatley, Anthony M. Zador