Author: David L. Weakliem
Publisher: Guilford Publications
ISBN: 1462525652
Category : Social Science
Languages : en
Pages : 217
Book Description
Examining the major approaches to hypothesis testing and model selection, this book blends statistical theory with recommendations for practice, illustrated with real-world social science examples. It systematically compares classical (frequentist) and Bayesian approaches, showing how they are applied, exploring ways to reconcile the differences between them, and evaluating key controversies and criticisms. The book also addresses the role of hypothesis testing in the evaluation of theories, the relationship between hypothesis tests and confidence intervals, and the role of prior knowledge in Bayesian estimation and Bayesian hypothesis testing. Two easily calculated alternatives to standard hypothesis tests are discussed in depth: the Akaike information criterion (AIC) and Bayesian information criterion (BIC). The companion website ([ital]www.guilford.com/weakliem-materials[/ital]) supplies data and syntax files for the book's examples.
Hypothesis Testing and Model Selection in the Social Sciences
Author: David L. Weakliem
Publisher: Guilford Publications
ISBN: 1462525652
Category : Social Science
Languages : en
Pages : 217
Book Description
Examining the major approaches to hypothesis testing and model selection, this book blends statistical theory with recommendations for practice, illustrated with real-world social science examples. It systematically compares classical (frequentist) and Bayesian approaches, showing how they are applied, exploring ways to reconcile the differences between them, and evaluating key controversies and criticisms. The book also addresses the role of hypothesis testing in the evaluation of theories, the relationship between hypothesis tests and confidence intervals, and the role of prior knowledge in Bayesian estimation and Bayesian hypothesis testing. Two easily calculated alternatives to standard hypothesis tests are discussed in depth: the Akaike information criterion (AIC) and Bayesian information criterion (BIC). The companion website ([ital]www.guilford.com/weakliem-materials[/ital]) supplies data and syntax files for the book's examples.
Publisher: Guilford Publications
ISBN: 1462525652
Category : Social Science
Languages : en
Pages : 217
Book Description
Examining the major approaches to hypothesis testing and model selection, this book blends statistical theory with recommendations for practice, illustrated with real-world social science examples. It systematically compares classical (frequentist) and Bayesian approaches, showing how they are applied, exploring ways to reconcile the differences between them, and evaluating key controversies and criticisms. The book also addresses the role of hypothesis testing in the evaluation of theories, the relationship between hypothesis tests and confidence intervals, and the role of prior knowledge in Bayesian estimation and Bayesian hypothesis testing. Two easily calculated alternatives to standard hypothesis tests are discussed in depth: the Akaike information criterion (AIC) and Bayesian information criterion (BIC). The companion website ([ital]www.guilford.com/weakliem-materials[/ital]) supplies data and syntax files for the book's examples.
Hypothesis Testing and Model Selection in the Social Sciences
Author: David L. Weakliem
Publisher: Guilford Publications
ISBN: 1462525660
Category : Social Science
Languages : en
Pages : 218
Book Description
Examining the major approaches to hypothesis testing and model selection, this book blends statistical theory with recommendations for practice, illustrated with real-world social science examples. It systematically compares classical (frequentist) and Bayesian approaches, showing how they are applied, exploring ways to reconcile the differences between them, and evaluating key controversies and criticisms. The book also addresses the role of hypothesis testing in the evaluation of theories, the relationship between hypothesis tests and confidence intervals, and the role of prior knowledge in Bayesian estimation and Bayesian hypothesis testing. Two easily calculated alternatives to standard hypothesis tests are discussed in depth: the Akaike information criterion (AIC) and Bayesian information criterion (BIC). The companion website ([ital]www.guilford.com/weakliem-materials[/ital]) supplies data and syntax files for the book's examples.
Publisher: Guilford Publications
ISBN: 1462525660
Category : Social Science
Languages : en
Pages : 218
Book Description
Examining the major approaches to hypothesis testing and model selection, this book blends statistical theory with recommendations for practice, illustrated with real-world social science examples. It systematically compares classical (frequentist) and Bayesian approaches, showing how they are applied, exploring ways to reconcile the differences between them, and evaluating key controversies and criticisms. The book also addresses the role of hypothesis testing in the evaluation of theories, the relationship between hypothesis tests and confidence intervals, and the role of prior knowledge in Bayesian estimation and Bayesian hypothesis testing. Two easily calculated alternatives to standard hypothesis tests are discussed in depth: the Akaike information criterion (AIC) and Bayesian information criterion (BIC). The companion website ([ital]www.guilford.com/weakliem-materials[/ital]) supplies data and syntax files for the book's examples.
Using and Interpreting Statistics in the Social, Behavioral, and Health Sciences
Author: William E. Wagner, III
Publisher: SAGE Publications
ISBN: 1544321090
Category : Social Science
Languages : en
Pages : 142
Book Description
Using and Interpreting Statistics in the Social, Behavioral, and Health Sciences is designed to be paired with any undergraduate introduction to research methods text used by students in a variety of disciplines. It introduces students to statistics at the conceptual level—examining the meaning of statistics, and why researchers use a particular statistical technique, rather than computational skills. Focusing on descriptive statistics, and some more advanced topics such as tests of significance, measures of association, and regression analysis, this brief, inexpensive text is the perfect companion to help students who have not yet taken an introductory statistics course or are confused by the statistics used in the articles they are reading.
Publisher: SAGE Publications
ISBN: 1544321090
Category : Social Science
Languages : en
Pages : 142
Book Description
Using and Interpreting Statistics in the Social, Behavioral, and Health Sciences is designed to be paired with any undergraduate introduction to research methods text used by students in a variety of disciplines. It introduces students to statistics at the conceptual level—examining the meaning of statistics, and why researchers use a particular statistical technique, rather than computational skills. Focusing on descriptive statistics, and some more advanced topics such as tests of significance, measures of association, and regression analysis, this brief, inexpensive text is the perfect companion to help students who have not yet taken an introductory statistics course or are confused by the statistics used in the articles they are reading.
Social Science Research
Author: Anol Bhattacherjee
Publisher: CreateSpace
ISBN: 9781475146127
Category : Science
Languages : en
Pages : 156
Book Description
This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.
Publisher: CreateSpace
ISBN: 9781475146127
Category : Science
Languages : en
Pages : 156
Book Description
This book is designed to introduce doctoral and graduate students to the process of conducting scientific research in the social sciences, business, education, public health, and related disciplines. It is a one-stop, comprehensive, and compact source for foundational concepts in behavioral research, and can serve as a stand-alone text or as a supplement to research readings in any doctoral seminar or research methods class. This book is currently used as a research text at universities on six continents and will shortly be available in nine different languages.
Introduction to Mediation, Moderation, and Conditional Process Analysis
Author: Andrew F. Hayes
Publisher: Guilford Publications
ISBN: 1462549039
Category : Social Science
Languages : en
Pages : 684
Book Description
Acclaimed for its thorough presentation of mediation, moderation, and conditional process analysis, this book has been updated to reflect the latest developments in PROCESS for SPSS, SAS, and, new to this edition, R. Using the principles of ordinary least squares regression, Andrew F. Hayes illustrates each step in an analysis using diverse examples from published studies, and displays SPSS, SAS, and R code for each example. Procedures are outlined for estimating and interpreting direct, indirect, and conditional effects; probing and visualizing interactions; testing hypotheses about the moderation of mechanisms; and reporting different types of analyses. Readers gain an understanding of the link between statistics and causality, as well as what the data are telling them. The companion website (www.afhayes.com) provides data for all the examples, plus the free PROCESS download. New to This Edition *Rewritten Appendix A, which provides the only documentation of PROCESS, including a discussion of the syntax structure of PROCESS for R compared to SPSS and SAS. *Expanded discussion of effect scaling and the difference between unstandardized, completely standardized, and partially standardized effects. *Discussion of the meaning of and how to generate the correlation between mediator residuals in a multiple-mediator model, using a new PROCESS option. *Discussion of a method for comparing the strength of two specific indirect effects that are different in sign. *Introduction of a bootstrap-based Johnson–Neyman-like approach for probing moderation of mediation in a conditional process model. *Discussion of testing for interaction between a causal antecedent variable [ital]X[/ital] and a mediator [ital]M[/ital] in a mediation analysis, and how to test this assumption in a new PROCESS feature.
Publisher: Guilford Publications
ISBN: 1462549039
Category : Social Science
Languages : en
Pages : 684
Book Description
Acclaimed for its thorough presentation of mediation, moderation, and conditional process analysis, this book has been updated to reflect the latest developments in PROCESS for SPSS, SAS, and, new to this edition, R. Using the principles of ordinary least squares regression, Andrew F. Hayes illustrates each step in an analysis using diverse examples from published studies, and displays SPSS, SAS, and R code for each example. Procedures are outlined for estimating and interpreting direct, indirect, and conditional effects; probing and visualizing interactions; testing hypotheses about the moderation of mechanisms; and reporting different types of analyses. Readers gain an understanding of the link between statistics and causality, as well as what the data are telling them. The companion website (www.afhayes.com) provides data for all the examples, plus the free PROCESS download. New to This Edition *Rewritten Appendix A, which provides the only documentation of PROCESS, including a discussion of the syntax structure of PROCESS for R compared to SPSS and SAS. *Expanded discussion of effect scaling and the difference between unstandardized, completely standardized, and partially standardized effects. *Discussion of the meaning of and how to generate the correlation between mediator residuals in a multiple-mediator model, using a new PROCESS option. *Discussion of a method for comparing the strength of two specific indirect effects that are different in sign. *Introduction of a bootstrap-based Johnson–Neyman-like approach for probing moderation of mediation in a conditional process model. *Discussion of testing for interaction between a causal antecedent variable [ital]X[/ital] and a mediator [ital]M[/ital] in a mediation analysis, and how to test this assumption in a new PROCESS feature.
Multilevel Modeling Methods with Introductory and Advanced Applications
Author: Ann A. O'Connell
Publisher: IAP
ISBN: 164802873X
Category : Education
Languages : en
Pages : 645
Book Description
Multilevel Modeling Methods with Introductory and Advanced Applications provides a cogent and comprehensive introduction to the area of multilevel modeling for methodological and applied researchers as well as advanced graduate students. The book is designed to be able to serve as a textbook for a one or two semester course in multilevel modeling. The topics of the seventeen chapters range from basic to advanced, yet each chapter is designed to be able to stand alone as an instructional unit on its respective topic, with an emphasis on application and interpretation. In addition to covering foundational topics on the use of multilevel models for organizational and longitudinal research, the book includes chapters on more advanced extensions and applications, such as cross-classified random effects models, non-linear growth models, mixed effects location scale models, logistic, ordinal, and Poisson models, and multilevel mediation. In addition, the volume includes chapters addressing some of the most important design and analytic issues including missing data, power analyses, causal inference, model fit, and measurement issues. Finally, the volume includes chapters addressing special topics such as using large-scale complex sample datasets, and reporting the results of multilevel designs. Each chapter contains a section called Try This!, which poses a structured data problem for the reader. We have linked our book to a website (http://modeling.uconn.edu) containing data for the Try This! section, creating an opportunity for readers to learn by doing. The inclusion of the Try This! problems, data, and sample code eases the burden for instructors, who must continually search for class examples and homework problems. In addition, each chapter provides recommendations for additional methodological and applied readings.
Publisher: IAP
ISBN: 164802873X
Category : Education
Languages : en
Pages : 645
Book Description
Multilevel Modeling Methods with Introductory and Advanced Applications provides a cogent and comprehensive introduction to the area of multilevel modeling for methodological and applied researchers as well as advanced graduate students. The book is designed to be able to serve as a textbook for a one or two semester course in multilevel modeling. The topics of the seventeen chapters range from basic to advanced, yet each chapter is designed to be able to stand alone as an instructional unit on its respective topic, with an emphasis on application and interpretation. In addition to covering foundational topics on the use of multilevel models for organizational and longitudinal research, the book includes chapters on more advanced extensions and applications, such as cross-classified random effects models, non-linear growth models, mixed effects location scale models, logistic, ordinal, and Poisson models, and multilevel mediation. In addition, the volume includes chapters addressing some of the most important design and analytic issues including missing data, power analyses, causal inference, model fit, and measurement issues. Finally, the volume includes chapters addressing special topics such as using large-scale complex sample datasets, and reporting the results of multilevel designs. Each chapter contains a section called Try This!, which poses a structured data problem for the reader. We have linked our book to a website (http://modeling.uconn.edu) containing data for the Try This! section, creating an opportunity for readers to learn by doing. The inclusion of the Try This! problems, data, and sample code eases the burden for instructors, who must continually search for class examples and homework problems. In addition, each chapter provides recommendations for additional methodological and applied readings.
Linear Regression Models
Author: John P. Hoffmann
Publisher: CRC Press
ISBN: 1000437965
Category : Mathematics
Languages : en
Pages : 437
Book Description
Research in social and behavioral sciences has benefited from linear regression models (LRMs) for decades to identify and understand the associations among a set of explanatory variables and an outcome variable. Linear Regression Models: Applications in R provides you with a comprehensive treatment of these models and indispensable guidance about how to estimate them using the R software environment. After furnishing some background material, the author explains how to estimate simple and multiple LRMs in R, including how to interpret their coefficients and understand their assumptions. Several chapters thoroughly describe these assumptions and explain how to determine whether they are satisfied and how to modify the regression model if they are not. The book also includes chapters on specifying the correct model, adjusting for measurement error, understanding the effects of influential observations, and using the model with multilevel data. The concluding chapter presents an alternative model—logistic regression—designed for binary or two-category outcome variables. The book includes appendices that discuss data management and missing data and provides simulations in R to test model assumptions. Features Furnishes a thorough introduction and detailed information about the linear regression model, including how to understand and interpret its results, test assumptions, and adapt the model when assumptions are not satisfied. Uses numerous graphs in R to illustrate the model’s results, assumptions, and other features. Does not assume a background in calculus or linear algebra, rather, an introductory statistics course and familiarity with elementary algebra are sufficient. Provides many examples using real-world datasets relevant to various academic disciplines. Fully integrates the R software environment in its numerous examples. The book is aimed primarily at advanced undergraduate and graduate students in social, behavioral, health sciences, and related disciplines, taking a first course in linear regression. It could also be used for self-study and would make an excellent reference for any researcher in these fields. The R code and detailed examples provided throughout the book equip the reader with an excellent set of tools for conducting research on numerous social and behavioral phenomena. John P. Hoffmann is a professor of sociology at Brigham Young University where he teaches research methods and applied statistics courses and conducts research on substance use and criminal behavior.
Publisher: CRC Press
ISBN: 1000437965
Category : Mathematics
Languages : en
Pages : 437
Book Description
Research in social and behavioral sciences has benefited from linear regression models (LRMs) for decades to identify and understand the associations among a set of explanatory variables and an outcome variable. Linear Regression Models: Applications in R provides you with a comprehensive treatment of these models and indispensable guidance about how to estimate them using the R software environment. After furnishing some background material, the author explains how to estimate simple and multiple LRMs in R, including how to interpret their coefficients and understand their assumptions. Several chapters thoroughly describe these assumptions and explain how to determine whether they are satisfied and how to modify the regression model if they are not. The book also includes chapters on specifying the correct model, adjusting for measurement error, understanding the effects of influential observations, and using the model with multilevel data. The concluding chapter presents an alternative model—logistic regression—designed for binary or two-category outcome variables. The book includes appendices that discuss data management and missing data and provides simulations in R to test model assumptions. Features Furnishes a thorough introduction and detailed information about the linear regression model, including how to understand and interpret its results, test assumptions, and adapt the model when assumptions are not satisfied. Uses numerous graphs in R to illustrate the model’s results, assumptions, and other features. Does not assume a background in calculus or linear algebra, rather, an introductory statistics course and familiarity with elementary algebra are sufficient. Provides many examples using real-world datasets relevant to various academic disciplines. Fully integrates the R software environment in its numerous examples. The book is aimed primarily at advanced undergraduate and graduate students in social, behavioral, health sciences, and related disciplines, taking a first course in linear regression. It could also be used for self-study and would make an excellent reference for any researcher in these fields. The R code and detailed examples provided throughout the book equip the reader with an excellent set of tools for conducting research on numerous social and behavioral phenomena. John P. Hoffmann is a professor of sociology at Brigham Young University where he teaches research methods and applied statistics courses and conducts research on substance use and criminal behavior.
Growth Modeling
Author: Kevin J. Grimm
Publisher: Guilford Publications
ISBN: 1462526063
Category : Social Science
Languages : en
Pages : 558
Book Description
Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.
Publisher: Guilford Publications
ISBN: 1462526063
Category : Social Science
Languages : en
Pages : 558
Book Description
Growth models are among the core methods for analyzing how and when people change. Discussing both structural equation and multilevel modeling approaches, this book leads readers step by step through applying each model to longitudinal data to answer particular research questions. It demonstrates cutting-edge ways to describe linear and nonlinear change patterns, examine within-person and between-person differences in change, study change in latent variables, identify leading and lagging indicators of change, evaluate co-occurring patterns of change across multiple variables, and more. User-friendly features include real data examples, code (for Mplus or NLMIXED in SAS, and OpenMx or nlme in R), discussion of the output, and interpretation of each model's results. User-Friendly Features *Real, worked-through longitudinal data examples serving as illustrations in each chapter. *Script boxes that provide code for fitting the models to example data and facilitate application to the reader's own data. *"Important Considerations" sections offering caveats, warnings, and recommendations for the use of specific models. *Companion website supplying datasets and syntax for the book's examples, along with additional code in SAS/R for linear mixed-effects modeling.
Introduction to Mediation, Moderation, and Conditional Process Analysis, Second Edition
Author: Andrew F. Hayes
Publisher: Guilford Publications
ISBN: 146253466X
Category : Social Science
Languages : en
Pages : 714
Book Description
This book has been replaced by Introduction to Mediation, Moderation, and Conditional Process Analysis, Third Edition, ISBN 978-1-4625-4903-0.
Publisher: Guilford Publications
ISBN: 146253466X
Category : Social Science
Languages : en
Pages : 714
Book Description
This book has been replaced by Introduction to Mediation, Moderation, and Conditional Process Analysis, Third Edition, ISBN 978-1-4625-4903-0.
Regression Analysis and Linear Models
Author: Richard B. Darlington
Publisher: Guilford Publications
ISBN: 1462527981
Category : Social Science
Languages : en
Pages : 689
Book Description
Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.
Publisher: Guilford Publications
ISBN: 1462527981
Category : Social Science
Languages : en
Pages : 689
Book Description
Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.