Hyperfunctions and Theoretical Physics

Hyperfunctions and Theoretical Physics PDF Author: F.L. Pham
Publisher: Springer
ISBN: 354037454X
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description

Hyperfunctions and Theoretical Physics

Hyperfunctions and Theoretical Physics PDF Author: F.L. Pham
Publisher: Springer
ISBN: 354037454X
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description


Hyperfunctions and Theoretical Physics

Hyperfunctions and Theoretical Physics PDF Author: F. L. Pham
Publisher:
ISBN: 9783662204511
Category :
Languages : en
Pages : 228

Get Book Here

Book Description


An Introduction to Sato's Hyperfunctions

An Introduction to Sato's Hyperfunctions PDF Author: Mitsuo Morimoto
Publisher: American Mathematical Soc.
ISBN: 9780821887677
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
This book is a translation, with corrections and an updated bibliography, of Morimoto's 1976 book on the theory of hyperfunctions originally written in Japanese. Since the time that Sato established the theory of hyperfunctions, there have been many important applications to such areas as pseudodifferential operators and S-matrices. Assuming as little background as possible on the part of the reader, Morimoto covers the basic notions of the theory, from hyperfunctions of one variable to Sato's fundamental theorem. This book provides an excellent introduction to this important field of research.

Introduction to Hyperfunctions and Their Integral Transforms

Introduction to Hyperfunctions and Their Integral Transforms PDF Author: Urs Graf
Publisher: Springer Science & Business Media
ISBN: 3034604076
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
This textbook presents an introduction to the subject of generalized functions and their integral transforms by an approach based on the theory of functions of one complex variable. It includes many concrete examples.

Theoretical and Mathematical Physics

Theoretical and Mathematical Physics PDF Author:
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 482

Get Book Here

Book Description


Operational Calculus

Operational Calculus PDF Author: Kosaku Yosida
Publisher: Springer Science & Business Media
ISBN: 1461211182
Category : Mathematics
Languages : en
Pages : 182

Get Book Here

Book Description
In the end of the last century, Oliver Heaviside inaugurated an operational calculus in connection with his researches in electromagnetic theory. In his operational calculus, the operator of differentiation was denoted by the symbol "p". The explanation of this operator p as given by him was difficult to understand and to use, and the range of the valid ity of his calculus remains unclear still now, although it was widely noticed that his calculus gives correct results in general. In the 1930s, Gustav Doetsch and many other mathematicians began to strive for the mathematical foundation of Heaviside's operational calculus by virtue of the Laplace transform -pt e f(t)dt. ( However, the use of such integrals naturally confronts restrictions con cerning the growth behavior of the numerical function f(t) as t ~ ~. At about the midcentury, Jan Mikusinski invented the theory of con volution quotients, based upon the Titchmarsh convolution theorem: If f(t) and get) are continuous functions defined on [O,~) such that the convolution f~ f(t-u)g(u)du =0, then either f(t) =0 or get) =0 must hold. The convolution quotients include the operator of differentiation "s" and related operators. Mikusinski's operational calculus gives a satisfactory basis of Heaviside's operational calculus; it can be applied successfully to linear ordinary differential equations with constant coefficients as well as to the telegraph equation which includes both the wave and heat equa tions with constant coefficients.

Mathematical Methods in Physics

Mathematical Methods in Physics PDF Author: Philippe Blanchard
Publisher: Springer Science & Business Media
ISBN: 1461200490
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
Physics has long been regarded as a wellspring of mathematical problems. Mathematical Methods in Physics is a self-contained presentation, driven by historic motivations, excellent examples, detailed proofs, and a focus on those parts of mathematics that are needed in more ambitious courses on quantum mechanics and classical and quantum field theory. Aimed primarily at a broad community of graduate students in mathematics, mathematical physics, physics and engineering, as well as researchers in these disciplines.

The Prehistory of the Theory of Distributions

The Prehistory of the Theory of Distributions PDF Author: J. Lützen
Publisher: Springer Science & Business Media
ISBN: 1461394724
Category : Mathematics
Languages : en
Pages : 241

Get Book Here

Book Description
I first learned the theory of distributions from Professor Ebbe Thue Poulsen in an undergraduate course at Aarhus University. Both his lectures and the textbook, Topological Vector Spaces, Distributions and Kernels by F. Treves, used in the course, opened my eyes to the beauty and abstract simplicity of the theory. However my incomplete study of many branches of classical analysis left me with the question: Why is the theory of distributions important? In my continued studies this question was gradually answered, but my growing interest in the history of mathematics caused me to alter my question to other questions such as: For what purpose, if any, was the theory of distributions originally created? Who invented distributions and when? I quickly found answers to the last two questions: distributions were invented by S. Sobolev and L. Schwartz around 1936 and 1950, respectively. Knowing this answer, however, only created a new question: Did Sobolev and Schwartz construct distributions from scratch or were there earlier trends and, if so, what were they? It is this question, concerning the pre history of the theory of distributions, which I attempt to answer in this book. Most of my research took place at the History of Science Department of Aarhus University. I wish to thank this department for its financial and intellectual support. I am especially grateful to Lektors Kirsti Andersen from the History of Science Department and Lars Mejlbo from the Mathematics Department, for their kindness, constructive criticism, and encouragement.

Generalized Functions Theory and Technique

Generalized Functions Theory and Technique PDF Author: Ram P. Kanwal
Publisher: Springer Science & Business Media
ISBN: 1468400355
Category : Mathematics
Languages : en
Pages : 474

Get Book Here

Book Description
This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.

Mathematical Methods in Physics

Mathematical Methods in Physics PDF Author: Philippe Blanchard
Publisher: Birkhäuser
ISBN: 3319140450
Category : Science
Languages : en
Pages : 598

Get Book Here

Book Description
The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas. The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories. All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods. The text is divided into three parts: - Part I: A brief introduction to (Schwartz) distribution theory. Elements from the theories of ultra distributions and (Fourier) hyperfunctions are given in addition to some deeper results for Schwartz distributions, thus providing a rather comprehensive introduction to the theory of generalized functions. Basic properties and methods for distributions are developed with applications to constant coefficient ODEs and PDEs. The relation between distributions and holomorphic functions is considered, as well as basic properties of Sobolev spaces. - Part II: Fundamental facts about Hilbert spaces. The basic theory of linear (bounded and unbounded) operators in Hilbert spaces and special classes of linear operators - compact, Hilbert-Schmidt, trace class, and Schrödinger operators, as needed in quantum physics and quantum information theory – are explored. This section also contains a detailed spectral analysis of all major classes of linear operators, including completeness of generalized eigenfunctions, as well as of (completely) positive mappings, in particular quantum operations. - Part III: Direct methods of the calculus of variations and their applications to boundary- and eigenvalue-problems for linear and nonlinear partial differential operators. The authors conclude with a discussion of the Hohenberg-Kohn variational principle. The appendices contain proofs of more general and deeper results, including completions, basic facts about metrizable Hausdorff locally convex topological vector spaces, Baire’s fundamental results and their main consequences, and bilinear functionals. Mathematical Methods in Physics is aimed at a broad community of graduate students in mathematics, mathematical physics, quantum information theory, physics and engineering, as well as researchers in these disciplines. Expanded content and relevant updates will make this new edition a valuable resource for those working in these disciplines.