Author: California Energy Commission
Publisher:
ISBN:
Category : Coal gasification
Languages : en
Pages : 808
Book Description
"This project is for an integrated gasification combined cycle (IGCC) power generating facility called Hydrogen Energy California (HECA) in Kern County, California.... The project, as proposed, would gasify blends of petroleum coke (25 %) and coal (75%) to produce hydrogen to fuel a combustion turbine operating in combined cycle mode. The gasification component would produce 180 million standard cubic feet per day (MMSCFD) of hydrogen to feed a 400 megawatt (MW) gross, 288 MW net combined cycle plant providing California with dispatchable baseload power to the grid. The gasification component would also capture approximately 130 MMSCFD of carbon dioxide (or approximately 90 percent at steady-state operation) which would be transported and used for enhanced oil recovery and sequestration (storage) in the Elk Hills Oil Field Unit. The HECA project would also produce approximately 1 million tons of fertilizer for domestic use" --California Energy Commission web site, Docket 08-AFC-8A.
Hydrogen Energy California Project: Sections 4.9-9
Author: California Energy Commission
Publisher:
ISBN:
Category : Coal gasification
Languages : en
Pages : 808
Book Description
"This project is for an integrated gasification combined cycle (IGCC) power generating facility called Hydrogen Energy California (HECA) in Kern County, California.... The project, as proposed, would gasify blends of petroleum coke (25 %) and coal (75%) to produce hydrogen to fuel a combustion turbine operating in combined cycle mode. The gasification component would produce 180 million standard cubic feet per day (MMSCFD) of hydrogen to feed a 400 megawatt (MW) gross, 288 MW net combined cycle plant providing California with dispatchable baseload power to the grid. The gasification component would also capture approximately 130 MMSCFD of carbon dioxide (or approximately 90 percent at steady-state operation) which would be transported and used for enhanced oil recovery and sequestration (storage) in the Elk Hills Oil Field Unit. The HECA project would also produce approximately 1 million tons of fertilizer for domestic use" --California Energy Commission web site, Docket 08-AFC-8A.
Publisher:
ISBN:
Category : Coal gasification
Languages : en
Pages : 808
Book Description
"This project is for an integrated gasification combined cycle (IGCC) power generating facility called Hydrogen Energy California (HECA) in Kern County, California.... The project, as proposed, would gasify blends of petroleum coke (25 %) and coal (75%) to produce hydrogen to fuel a combustion turbine operating in combined cycle mode. The gasification component would produce 180 million standard cubic feet per day (MMSCFD) of hydrogen to feed a 400 megawatt (MW) gross, 288 MW net combined cycle plant providing California with dispatchable baseload power to the grid. The gasification component would also capture approximately 130 MMSCFD of carbon dioxide (or approximately 90 percent at steady-state operation) which would be transported and used for enhanced oil recovery and sequestration (storage) in the Elk Hills Oil Field Unit. The HECA project would also produce approximately 1 million tons of fertilizer for domestic use" --California Energy Commission web site, Docket 08-AFC-8A.
Hydrogen Energy California Project: Sections 1-4.2
Author: California Energy Commission
Publisher:
ISBN:
Category : Coal gasification
Languages : en
Pages : 790
Book Description
"This project is for an integrated gasification combined cycle (IGCC) power generating facility called Hydrogen Energy California (HECA) in Kern County, California.... The project, as proposed, would gasify blends of petroleum coke (25 %) and coal (75%) to produce hydrogen to fuel a combustion turbine operating in combined cycle mode. The gasification component would produce 180 million standard cubic feet per day (MMSCFD) of hydrogen to feed a 400 megawatt (MW) gross, 288 MW net combined cycle plant providing California with dispatchable baseload power to the grid. The gasification component would also capture approximately 130 MMSCFD of carbon dioxide (or approximately 90 percent at steady-state operation) which would be transported and used for enhanced oil recovery and sequestration (storage) in the Elk Hills Oil Field Unit. The HECA project would also produce approximately 1 million tons of fertilizer for domestic use" --California Energy Commission web site, Docket 08-AFC-8A.
Publisher:
ISBN:
Category : Coal gasification
Languages : en
Pages : 790
Book Description
"This project is for an integrated gasification combined cycle (IGCC) power generating facility called Hydrogen Energy California (HECA) in Kern County, California.... The project, as proposed, would gasify blends of petroleum coke (25 %) and coal (75%) to produce hydrogen to fuel a combustion turbine operating in combined cycle mode. The gasification component would produce 180 million standard cubic feet per day (MMSCFD) of hydrogen to feed a 400 megawatt (MW) gross, 288 MW net combined cycle plant providing California with dispatchable baseload power to the grid. The gasification component would also capture approximately 130 MMSCFD of carbon dioxide (or approximately 90 percent at steady-state operation) which would be transported and used for enhanced oil recovery and sequestration (storage) in the Elk Hills Oil Field Unit. The HECA project would also produce approximately 1 million tons of fertilizer for domestic use" --California Energy Commission web site, Docket 08-AFC-8A.
Hydrogen Energy California Project: Sections 4.3-4.8
Author: California Energy Commission
Publisher:
ISBN:
Category : Coal gasification
Languages : en
Pages : 706
Book Description
"This project is for an integrated gasification combined cycle (IGCC) power generating facility called Hydrogen Energy California (HECA) in Kern County, California.... The project, as proposed, would gasify blends of petroleum coke (25 %) and coal (75%) to produce hydrogen to fuel a combustion turbine operating in combined cycle mode. The gasification component would produce 180 million standard cubic feet per day (MMSCFD) of hydrogen to feed a 400 megawatt (MW) gross, 288 MW net combined cycle plant providing California with dispatchable baseload power to the grid. The gasification component would also capture approximately 130 MMSCFD of carbon dioxide (or approximately 90 percent at steady-state operation) which would be transported and used for enhanced oil recovery and sequestration (storage) in the Elk Hills Oil Field Unit. The HECA project would also produce approximately 1 million tons of fertilizer for domestic use" --California Energy Commission web site, Docket 08-AFC-8A.
Publisher:
ISBN:
Category : Coal gasification
Languages : en
Pages : 706
Book Description
"This project is for an integrated gasification combined cycle (IGCC) power generating facility called Hydrogen Energy California (HECA) in Kern County, California.... The project, as proposed, would gasify blends of petroleum coke (25 %) and coal (75%) to produce hydrogen to fuel a combustion turbine operating in combined cycle mode. The gasification component would produce 180 million standard cubic feet per day (MMSCFD) of hydrogen to feed a 400 megawatt (MW) gross, 288 MW net combined cycle plant providing California with dispatchable baseload power to the grid. The gasification component would also capture approximately 130 MMSCFD of carbon dioxide (or approximately 90 percent at steady-state operation) which would be transported and used for enhanced oil recovery and sequestration (storage) in the Elk Hills Oil Field Unit. The HECA project would also produce approximately 1 million tons of fertilizer for domestic use" --California Energy Commission web site, Docket 08-AFC-8A.
Photoelectrochemical Hydrogen Production
Author: Roel van de Krol
Publisher: Springer Science & Business Media
ISBN: 146141380X
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.
Publisher: Springer Science & Business Media
ISBN: 146141380X
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.
Hydrogen and Fuel Cells
Author: International Energy Agency
Publisher: Simon and Schuster
ISBN: 9264108831
Category : Electronic books
Languages : en
Pages : 208
Book Description
Hydrogen and fuel cells are vital technologies to ensure a secure and CO2-free energy future. Their development will take decades of extensive public and private effort to achieve technology breakthroughs and commercial maturity. Government research programs are indispensable for catalyzing the development process. This report maps the IEA countries' current efforts to research, develop and deploy the interlocking elements that constitute a "hydrogen economy", including CO2 capture and storage when hydrogen is produced out of fossil fuels. It provides an overview of what is being done, and by whom, covering an extensive complexity of national government R & D programs. The survey highlights the potential for exploiting the benefits of the international cooperation. This book draws primarily upon information contributed by IEA governments. In virtually all the IEA countries, important R & D and policy efforts on hydrogen and fuel cells are in place and expanding. Some are fully-integrated, government-funded programs, some are a key element in an overall strategy spread among multiple public and private efforts. The large amount of information provided in this publication reflects the vast array of technologies and logistics required to build the "hydrogen economy."--Publisher description.
Publisher: Simon and Schuster
ISBN: 9264108831
Category : Electronic books
Languages : en
Pages : 208
Book Description
Hydrogen and fuel cells are vital technologies to ensure a secure and CO2-free energy future. Their development will take decades of extensive public and private effort to achieve technology breakthroughs and commercial maturity. Government research programs are indispensable for catalyzing the development process. This report maps the IEA countries' current efforts to research, develop and deploy the interlocking elements that constitute a "hydrogen economy", including CO2 capture and storage when hydrogen is produced out of fossil fuels. It provides an overview of what is being done, and by whom, covering an extensive complexity of national government R & D programs. The survey highlights the potential for exploiting the benefits of the international cooperation. This book draws primarily upon information contributed by IEA governments. In virtually all the IEA countries, important R & D and policy efforts on hydrogen and fuel cells are in place and expanding. Some are fully-integrated, government-funded programs, some are a key element in an overall strategy spread among multiple public and private efforts. The large amount of information provided in this publication reflects the vast array of technologies and logistics required to build the "hydrogen economy."--Publisher description.
The Hydrogen Economy
Author: National Academy of Engineering
Publisher: National Academies Press
ISBN: 0309091632
Category : Science
Languages : en
Pages : 257
Book Description
The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.
Publisher: National Academies Press
ISBN: 0309091632
Category : Science
Languages : en
Pages : 257
Book Description
The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.
NBS Technical Note
Author:
Publisher:
ISBN:
Category : Physical instruments
Languages : en
Pages : 136
Book Description
Publisher:
ISBN:
Category : Physical instruments
Languages : en
Pages : 136
Book Description
Renewable Hydrogen Technologies
Author: Luis M Gandia
Publisher: Newnes
ISBN: 044456361X
Category : Technology & Engineering
Languages : en
Pages : 471
Book Description
The fields covered by the hydrogen energy topic have grown rapidly, and now it has become clearly multidisciplinary. In addition to production, hydrogen purification and especially storage are key challenges that could limit the use of hydrogen fuel. In this book, the purification of hydrogen with membrane technology and its storage in "solid" form using new hydrides and carbon materials are addressed. Other novelties of this volume include the power conditioning of water electrolyzers, the integration in the electric grid of renewable hydrogen systems and the future role of microreactors and micro-process engineering in hydrogen technology as well as the potential of computational fluid dynamics to hydrogen equipment design and the assessment of safety issues. Finally, and being aware that transportation will likely constitute the first commercial application of hydrogen fuel, two chapters are devoted to the recent advances in hydrogen fuel cells and hydrogen-fueled internal combustion engines for transport vehicles. - Hydrogen from water and biomass considered - Holistic approach to the topic of renewable hydrogen production - Power conditioning of water electrolyzers and integration of renewable hydrogen energy systems considered - Subjects not included in previous books on hydrogen energy - Micro process technology considered - Subject not included in previous books on hydrogen energy - Applications of CFD considered - Subject not included in previous books on hydrogen energy - Fundamental aspects will not be discussed in detail consciously as they are suitably addressed in previous books - Emphasis on technological advancements - Chapters written by recognized experts - Up-to date approach to the subjects and relevant bibliographic references
Publisher: Newnes
ISBN: 044456361X
Category : Technology & Engineering
Languages : en
Pages : 471
Book Description
The fields covered by the hydrogen energy topic have grown rapidly, and now it has become clearly multidisciplinary. In addition to production, hydrogen purification and especially storage are key challenges that could limit the use of hydrogen fuel. In this book, the purification of hydrogen with membrane technology and its storage in "solid" form using new hydrides and carbon materials are addressed. Other novelties of this volume include the power conditioning of water electrolyzers, the integration in the electric grid of renewable hydrogen systems and the future role of microreactors and micro-process engineering in hydrogen technology as well as the potential of computational fluid dynamics to hydrogen equipment design and the assessment of safety issues. Finally, and being aware that transportation will likely constitute the first commercial application of hydrogen fuel, two chapters are devoted to the recent advances in hydrogen fuel cells and hydrogen-fueled internal combustion engines for transport vehicles. - Hydrogen from water and biomass considered - Holistic approach to the topic of renewable hydrogen production - Power conditioning of water electrolyzers and integration of renewable hydrogen energy systems considered - Subjects not included in previous books on hydrogen energy - Micro process technology considered - Subject not included in previous books on hydrogen energy - Applications of CFD considered - Subject not included in previous books on hydrogen energy - Fundamental aspects will not be discussed in detail consciously as they are suitably addressed in previous books - Emphasis on technological advancements - Chapters written by recognized experts - Up-to date approach to the subjects and relevant bibliographic references
Fuel Cell and Distributed Generation Research, Development, and Demonstration Plan
Author:
Publisher:
ISBN:
Category : Distributed generation of electric power
Languages : en
Pages : 394
Book Description
Publisher:
ISBN:
Category : Distributed generation of electric power
Languages : en
Pages : 394
Book Description
Energy Abstracts for Policy Analysis
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 1024
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 1024
Book Description