Author: Jun-Jie Wang
Publisher: John Wiley & Sons
ISBN: 1118725565
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Presents a systematic and comprehensive study of hydraulic fracturing, original in its concentration of core soil problems There have been a number of well-studied cases in which dams have failed or been damaged by concentrated leaks for no apparent cause. In some of these experiences, investigators concluded that differential settlement cracks were the probable causes, even though no cracks were seen on the surface. In these examples, it was not determined whether the crack was open before the reservoir filled or whether it might have opened afterward. In several unsolved problems on the safety of the earth-rock fill dam, the problem of hydraulic fracture in the soil core of the earth-rock fill dam is one that is widely paid attention by designers and researchers. Hydraulic fracturing is generally considered as a key cause which may induce the leakage of the dam during first filling. In this extensive book, a new numerical simulate method is suggested. The method is based on the conventional two-dimensional finite element technique, and the theoretical formulations to calculate energy release rate using virtual crack extension method. The influence factors on convergence of calculated J integral are investigated. The accuracy of the calculated J integral is verified by analysing the three typical problems in Fracture Mechanics, in which propagation of crack may follow mode I, mode II and mixed mode I-II respectively. Using the new numerical method, the factors affecting the occurrence of hydraulic fracturing in the earth-rock fill dam are investigated. The investigating results indicate that increasing any of the Young’s modulus, the Poisson’s ratio and the density of the core soil is helpful to reduce the likelihood of the occurrence of hydraulic fracturing. The likelihood of the occurrence of hydraulic fracturing increases with increasing the water level or the crack depth. The lower part of the dam core is the zone in which the phenomenon of hydraulic fracturing may be induced easily. As an example to analyse the ability of earth-rock fill dam to resist hydraulic fracturing, the Nuozhadu Dam located in Western China is analysed. Presents a systematic and comprehensive study of hydraulic fracturing, original in its concentration of core soil problems Focuses on the problem of hydraulic fracturing in earth-rock fill dams from three aspects; conditions and mechanisms of hydraulic fracturing, criterion of hydraulic fracturing, and numerical method on hydraulic fracturing Examines advanced laboratory soil testing, application of numerical methods and field testing/monitoring, all needed for a better understanding of hydraulic fracturing in earth/rock fill dams Provides an essential reference in an area of scarce research in this field, and the need in high earth dam construction in developing countries is pressing Ideal for researchers in Hydraulic and Geotechnical Engineering Fields; Students on Masters or PhD courses; as well as Designers and Constructors in Hydraulic and Geotechnical Engineering Fields.
Hydraulic Fracturing in Earth-rock Fill Dams
Author: Jun-Jie Wang
Publisher: John Wiley & Sons
ISBN: 1118725565
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Presents a systematic and comprehensive study of hydraulic fracturing, original in its concentration of core soil problems There have been a number of well-studied cases in which dams have failed or been damaged by concentrated leaks for no apparent cause. In some of these experiences, investigators concluded that differential settlement cracks were the probable causes, even though no cracks were seen on the surface. In these examples, it was not determined whether the crack was open before the reservoir filled or whether it might have opened afterward. In several unsolved problems on the safety of the earth-rock fill dam, the problem of hydraulic fracture in the soil core of the earth-rock fill dam is one that is widely paid attention by designers and researchers. Hydraulic fracturing is generally considered as a key cause which may induce the leakage of the dam during first filling. In this extensive book, a new numerical simulate method is suggested. The method is based on the conventional two-dimensional finite element technique, and the theoretical formulations to calculate energy release rate using virtual crack extension method. The influence factors on convergence of calculated J integral are investigated. The accuracy of the calculated J integral is verified by analysing the three typical problems in Fracture Mechanics, in which propagation of crack may follow mode I, mode II and mixed mode I-II respectively. Using the new numerical method, the factors affecting the occurrence of hydraulic fracturing in the earth-rock fill dam are investigated. The investigating results indicate that increasing any of the Young’s modulus, the Poisson’s ratio and the density of the core soil is helpful to reduce the likelihood of the occurrence of hydraulic fracturing. The likelihood of the occurrence of hydraulic fracturing increases with increasing the water level or the crack depth. The lower part of the dam core is the zone in which the phenomenon of hydraulic fracturing may be induced easily. As an example to analyse the ability of earth-rock fill dam to resist hydraulic fracturing, the Nuozhadu Dam located in Western China is analysed. Presents a systematic and comprehensive study of hydraulic fracturing, original in its concentration of core soil problems Focuses on the problem of hydraulic fracturing in earth-rock fill dams from three aspects; conditions and mechanisms of hydraulic fracturing, criterion of hydraulic fracturing, and numerical method on hydraulic fracturing Examines advanced laboratory soil testing, application of numerical methods and field testing/monitoring, all needed for a better understanding of hydraulic fracturing in earth/rock fill dams Provides an essential reference in an area of scarce research in this field, and the need in high earth dam construction in developing countries is pressing Ideal for researchers in Hydraulic and Geotechnical Engineering Fields; Students on Masters or PhD courses; as well as Designers and Constructors in Hydraulic and Geotechnical Engineering Fields.
Publisher: John Wiley & Sons
ISBN: 1118725565
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Presents a systematic and comprehensive study of hydraulic fracturing, original in its concentration of core soil problems There have been a number of well-studied cases in which dams have failed or been damaged by concentrated leaks for no apparent cause. In some of these experiences, investigators concluded that differential settlement cracks were the probable causes, even though no cracks were seen on the surface. In these examples, it was not determined whether the crack was open before the reservoir filled or whether it might have opened afterward. In several unsolved problems on the safety of the earth-rock fill dam, the problem of hydraulic fracture in the soil core of the earth-rock fill dam is one that is widely paid attention by designers and researchers. Hydraulic fracturing is generally considered as a key cause which may induce the leakage of the dam during first filling. In this extensive book, a new numerical simulate method is suggested. The method is based on the conventional two-dimensional finite element technique, and the theoretical formulations to calculate energy release rate using virtual crack extension method. The influence factors on convergence of calculated J integral are investigated. The accuracy of the calculated J integral is verified by analysing the three typical problems in Fracture Mechanics, in which propagation of crack may follow mode I, mode II and mixed mode I-II respectively. Using the new numerical method, the factors affecting the occurrence of hydraulic fracturing in the earth-rock fill dam are investigated. The investigating results indicate that increasing any of the Young’s modulus, the Poisson’s ratio and the density of the core soil is helpful to reduce the likelihood of the occurrence of hydraulic fracturing. The likelihood of the occurrence of hydraulic fracturing increases with increasing the water level or the crack depth. The lower part of the dam core is the zone in which the phenomenon of hydraulic fracturing may be induced easily. As an example to analyse the ability of earth-rock fill dam to resist hydraulic fracturing, the Nuozhadu Dam located in Western China is analysed. Presents a systematic and comprehensive study of hydraulic fracturing, original in its concentration of core soil problems Focuses on the problem of hydraulic fracturing in earth-rock fill dams from three aspects; conditions and mechanisms of hydraulic fracturing, criterion of hydraulic fracturing, and numerical method on hydraulic fracturing Examines advanced laboratory soil testing, application of numerical methods and field testing/monitoring, all needed for a better understanding of hydraulic fracturing in earth/rock fill dams Provides an essential reference in an area of scarce research in this field, and the need in high earth dam construction in developing countries is pressing Ideal for researchers in Hydraulic and Geotechnical Engineering Fields; Students on Masters or PhD courses; as well as Designers and Constructors in Hydraulic and Geotechnical Engineering Fields.
Hydraulic Fracturing in Earth-rock Fill Dams
Author: Jun-Jie Wang
Publisher: John Wiley & Sons
ISBN: 1118725506
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Presents a systematic and comprehensive study of hydraulic fracturing, original in its concentration of core soil problems There have been a number of well-studied cases in which dams have failed or been damaged by concentrated leaks for no apparent cause. In some of these experiences, investigators concluded that differential settlement cracks were the probable causes, even though no cracks were seen on the surface. In these examples, it was not determined whether the crack was open before the reservoir filled or whether it might have opened afterward. In several unsolved problems on the safety of the earth-rock fill dam, the problem of hydraulic fracture in the soil core of the earth-rock fill dam is one that is widely paid attention by designers and researchers. Hydraulic fracturing is generally considered as a key cause which may induce the leakage of the dam during first filling. In this extensive book, a new numerical simulate method is suggested. The method is based on the conventional two-dimensional finite element technique, and the theoretical formulations to calculate energy release rate using virtual crack extension method. The influence factors on convergence of calculated J integral are investigated. The accuracy of the calculated J integral is verified by analysing the three typical problems in Fracture Mechanics, in which propagation of crack may follow mode I, mode II and mixed mode I-II respectively. Using the new numerical method, the factors affecting the occurrence of hydraulic fracturing in the earth-rock fill dam are investigated. The investigating results indicate that increasing any of the Young’s modulus, the Poisson’s ratio and the density of the core soil is helpful to reduce the likelihood of the occurrence of hydraulic fracturing. The likelihood of the occurrence of hydraulic fracturing increases with increasing the water level or the crack depth. The lower part of the dam core is the zone in which the phenomenon of hydraulic fracturing may be induced easily. As an example to analyse the ability of earth-rock fill dam to resist hydraulic fracturing, the Nuozhadu Dam located in Western China is analysed. Presents a systematic and comprehensive study of hydraulic fracturing, original in its concentration of core soil problems Focuses on the problem of hydraulic fracturing in earth-rock fill dams from three aspects; conditions and mechanisms of hydraulic fracturing, criterion of hydraulic fracturing, and numerical method on hydraulic fracturing Examines advanced laboratory soil testing, application of numerical methods and field testing/monitoring, all needed for a better understanding of hydraulic fracturing in earth/rock fill dams Provides an essential reference in an area of scarce research in this field, and the need in high earth dam construction in developing countries is pressing Ideal for researchers in Hydraulic and Geotechnical Engineering Fields; Students on Masters or PhD courses; as well as Designers and Constructors in Hydraulic and Geotechnical Engineering Fields.
Publisher: John Wiley & Sons
ISBN: 1118725506
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Presents a systematic and comprehensive study of hydraulic fracturing, original in its concentration of core soil problems There have been a number of well-studied cases in which dams have failed or been damaged by concentrated leaks for no apparent cause. In some of these experiences, investigators concluded that differential settlement cracks were the probable causes, even though no cracks were seen on the surface. In these examples, it was not determined whether the crack was open before the reservoir filled or whether it might have opened afterward. In several unsolved problems on the safety of the earth-rock fill dam, the problem of hydraulic fracture in the soil core of the earth-rock fill dam is one that is widely paid attention by designers and researchers. Hydraulic fracturing is generally considered as a key cause which may induce the leakage of the dam during first filling. In this extensive book, a new numerical simulate method is suggested. The method is based on the conventional two-dimensional finite element technique, and the theoretical formulations to calculate energy release rate using virtual crack extension method. The influence factors on convergence of calculated J integral are investigated. The accuracy of the calculated J integral is verified by analysing the three typical problems in Fracture Mechanics, in which propagation of crack may follow mode I, mode II and mixed mode I-II respectively. Using the new numerical method, the factors affecting the occurrence of hydraulic fracturing in the earth-rock fill dam are investigated. The investigating results indicate that increasing any of the Young’s modulus, the Poisson’s ratio and the density of the core soil is helpful to reduce the likelihood of the occurrence of hydraulic fracturing. The likelihood of the occurrence of hydraulic fracturing increases with increasing the water level or the crack depth. The lower part of the dam core is the zone in which the phenomenon of hydraulic fracturing may be induced easily. As an example to analyse the ability of earth-rock fill dam to resist hydraulic fracturing, the Nuozhadu Dam located in Western China is analysed. Presents a systematic and comprehensive study of hydraulic fracturing, original in its concentration of core soil problems Focuses on the problem of hydraulic fracturing in earth-rock fill dams from three aspects; conditions and mechanisms of hydraulic fracturing, criterion of hydraulic fracturing, and numerical method on hydraulic fracturing Examines advanced laboratory soil testing, application of numerical methods and field testing/monitoring, all needed for a better understanding of hydraulic fracturing in earth/rock fill dams Provides an essential reference in an area of scarce research in this field, and the need in high earth dam construction in developing countries is pressing Ideal for researchers in Hydraulic and Geotechnical Engineering Fields; Students on Masters or PhD courses; as well as Designers and Constructors in Hydraulic and Geotechnical Engineering Fields.
Earth and Rockfill Dams
Author: Christian Kutzner
Publisher: Routledge
ISBN: 1351454013
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This text methodically demonstrates the basic rules for the design criteria of earthfill and rockfill dams. It expertly guides the reader from preliminary work through the design of various embankment dams and on to the construction and finally the control of safety in completed structures.
Publisher: Routledge
ISBN: 1351454013
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This text methodically demonstrates the basic rules for the design criteria of earthfill and rockfill dams. It expertly guides the reader from preliminary work through the design of various embankment dams and on to the construction and finally the control of safety in completed structures.
Effect of Reservoir Filling on Stresses and Movements in Earth and Rockfill Dams
Author: E. S. Nobari
Publisher:
ISBN:
Category : Earth dams
Languages : en
Pages : 196
Book Description
Publisher:
ISBN:
Category : Earth dams
Languages : en
Pages : 196
Book Description
Selected Water Resources Abstracts
Author:
Publisher:
ISBN:
Category : Water
Languages : en
Pages : 496
Book Description
Publisher:
ISBN:
Category : Water
Languages : en
Pages : 496
Book Description
Analysis of Consolidation of Earth and Rockfill Dams
Author: Ching S. Chang
Publisher:
ISBN:
Category : Clay
Languages : en
Pages : 156
Book Description
Publisher:
ISBN:
Category : Clay
Languages : en
Pages : 156
Book Description
Microthesaurus of Soil Mechanics Terms
Author: Soil Mechanics Information Analysis Center
Publisher:
ISBN:
Category : Engineering geology
Languages : en
Pages : 362
Book Description
Publisher:
ISBN:
Category : Engineering geology
Languages : en
Pages : 362
Book Description
WES Microthesaurus of Scientific and Technical Terms
Author: Waterways Experiment Station (U.S.)
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 610
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 610
Book Description
Geotechnical Predictions and Practice in Dealing with Geohazards
Author: Jian Chu
Publisher: Springer Science & Business Media
ISBN: 9400756755
Category : Science
Languages : en
Pages : 404
Book Description
The recent earthquake disasters in Japan and a series of other disasters in the world have highlighted again the need for more reliable geotechnical prediction and better methods for geotechnical design and in particular dealing with geohazards. This book provides a timely review and summaries of the recent advances in theories, analyses and methods for geotechnical predictions and the most up-to-date practices in geotechnical engineering and particularly in dealing with geohazards. A special section on the geotechnical aspects of the recent Tohoku earthquake disaster in Japan is also presented in this book. Key Features: This book is written by a group of internationally renowned researchers and practioners to honour and mark the 40 years’ contribution of one of the greatest educators, researchers and engineers in the world, Professor Hideki Ohta, to geotechnical engineering. Professor Ohta is presently professor at Chou University after his retirement from Tokyo Institute of Technology, Japan. The book provides some first-hand information on the 2011 Tohuko earthquake disasters in Japan, the most recent update on the theories and methods for geotechnical analyses and predictions, and the latest methods and practices in geotechnical engineering, in particular, dealing with geotechnical hazard. It is a rare occasion for some 30 plus international authorities to write on their best topic that they have been working on for years. The book is a must-have collection for any libraries and professionals in geotechnical engineering.
Publisher: Springer Science & Business Media
ISBN: 9400756755
Category : Science
Languages : en
Pages : 404
Book Description
The recent earthquake disasters in Japan and a series of other disasters in the world have highlighted again the need for more reliable geotechnical prediction and better methods for geotechnical design and in particular dealing with geohazards. This book provides a timely review and summaries of the recent advances in theories, analyses and methods for geotechnical predictions and the most up-to-date practices in geotechnical engineering and particularly in dealing with geohazards. A special section on the geotechnical aspects of the recent Tohoku earthquake disaster in Japan is also presented in this book. Key Features: This book is written by a group of internationally renowned researchers and practioners to honour and mark the 40 years’ contribution of one of the greatest educators, researchers and engineers in the world, Professor Hideki Ohta, to geotechnical engineering. Professor Ohta is presently professor at Chou University after his retirement from Tokyo Institute of Technology, Japan. The book provides some first-hand information on the 2011 Tohuko earthquake disasters in Japan, the most recent update on the theories and methods for geotechnical analyses and predictions, and the latest methods and practices in geotechnical engineering, in particular, dealing with geotechnical hazard. It is a rare occasion for some 30 plus international authorities to write on their best topic that they have been working on for years. The book is a must-have collection for any libraries and professionals in geotechnical engineering.
New Developments in Dam Engineering
Author: Martin Wieland
Publisher: CRC Press
ISBN: 9780203020678
Category : Technology & Engineering
Languages : en
Pages : 1248
Book Description
The development of water resources is a key element in the socio-economic development of many regions in the world. Water availability and rainfall are unequally distributed both in space and time, so dams play a vital role, there being few viable alternatives for storing water. Dams hold a prime place in satisfying the ever-increasing demand for power, irrigation and drinking water, for protection of man, property and environment from catastrophic floods, and for regulating the flow of rivers. Dams have contributed to the development of civilization for over 2,000 years. Worldwide there are some 45,000 large dams listed by ICOLD, which have a height over 15 meters. Today, in western countries, where most of the water resources have been developed, the safety of the existing dams and measures for extending their economical life are of prime concern. In developing countries the focus is on the construction of new dams. The proceedings of the 4th International Conference on Dam Engineering includes contributions from 18 countries, and provides an overview of the state-of-the-art in hydropower development, new type dams, new materials and new technologies, dam and environment. Traditional areas, such as concrete dams and embankment dams, methods of analysis and design of dams, dam foundation, seismic analysis, design and safety, stability of dam and slope, dam safety monitoring and instrumentation, dam maintenance, and rehabilitation and heightening are also considered. The book is of special interest to scientists, researchers, engineers, and students working in dam engineering, dam design, hydropower development, environmental engineering, and structural hydraulics.
Publisher: CRC Press
ISBN: 9780203020678
Category : Technology & Engineering
Languages : en
Pages : 1248
Book Description
The development of water resources is a key element in the socio-economic development of many regions in the world. Water availability and rainfall are unequally distributed both in space and time, so dams play a vital role, there being few viable alternatives for storing water. Dams hold a prime place in satisfying the ever-increasing demand for power, irrigation and drinking water, for protection of man, property and environment from catastrophic floods, and for regulating the flow of rivers. Dams have contributed to the development of civilization for over 2,000 years. Worldwide there are some 45,000 large dams listed by ICOLD, which have a height over 15 meters. Today, in western countries, where most of the water resources have been developed, the safety of the existing dams and measures for extending their economical life are of prime concern. In developing countries the focus is on the construction of new dams. The proceedings of the 4th International Conference on Dam Engineering includes contributions from 18 countries, and provides an overview of the state-of-the-art in hydropower development, new type dams, new materials and new technologies, dam and environment. Traditional areas, such as concrete dams and embankment dams, methods of analysis and design of dams, dam foundation, seismic analysis, design and safety, stability of dam and slope, dam safety monitoring and instrumentation, dam maintenance, and rehabilitation and heightening are also considered. The book is of special interest to scientists, researchers, engineers, and students working in dam engineering, dam design, hydropower development, environmental engineering, and structural hydraulics.