Author: Martin H. Müser
Publisher: Forschungszentrum Jülich
ISBN: 3893368493
Category :
Languages : en
Pages : 245
Book Description
Hybrid Particle-continuum Methods in Computational Materials Physics
Author: Martin H. Müser
Publisher: Forschungszentrum Jülich
ISBN: 3893368493
Category :
Languages : en
Pages : 245
Book Description
Publisher: Forschungszentrum Jülich
ISBN: 3893368493
Category :
Languages : en
Pages : 245
Book Description
Molecular Dynamics Simulation
Author: Giovanni Ciccotti
Publisher: MDPI
ISBN: 3906980650
Category : Science
Languages : en
Pages : 627
Book Description
Printed Edition of the Special Issue Published in Entropy
Publisher: MDPI
ISBN: 3906980650
Category : Science
Languages : en
Pages : 627
Book Description
Printed Edition of the Special Issue Published in Entropy
The Material Point Method
Author: Xiong Zhang
Publisher: Academic Press
ISBN: 0124078559
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases systematically introduces the theory, code design, and application of the material point method, covering subjects such as the spatial and temporal discretization of MPM, frequently-used strength models and equations of state of materials, contact algorithms in MPM, adaptive MPM, the hybrid/coupled material point finite element method, object-oriented programming of MPM, and the application of MPM in impact, explosion, and metal forming. Recent progresses are also stated in this monograph, including improvement of efficiency, memory storage, coupling/combination with the finite element method, the contact algorithm, and their application to problems. - Provides a user's guide and several numerical examples of the MPM3D-F90 code that can be downloaded from a website - Presents models that describe different types of material behaviors, with a focus on extreme events. - Includes applications of MPM and its extensions in extreme events, such as transient crack propagation, impact/penetration, blast, fluid-structure interaction, and biomechanical responses to extreme loading
Publisher: Academic Press
ISBN: 0124078559
Category : Technology & Engineering
Languages : en
Pages : 302
Book Description
The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases systematically introduces the theory, code design, and application of the material point method, covering subjects such as the spatial and temporal discretization of MPM, frequently-used strength models and equations of state of materials, contact algorithms in MPM, adaptive MPM, the hybrid/coupled material point finite element method, object-oriented programming of MPM, and the application of MPM in impact, explosion, and metal forming. Recent progresses are also stated in this monograph, including improvement of efficiency, memory storage, coupling/combination with the finite element method, the contact algorithm, and their application to problems. - Provides a user's guide and several numerical examples of the MPM3D-F90 code that can be downloaded from a website - Presents models that describe different types of material behaviors, with a focus on extreme events. - Includes applications of MPM and its extensions in extreme events, such as transient crack propagation, impact/penetration, blast, fluid-structure interaction, and biomechanical responses to extreme loading
Microlithography
Author: Bruce W. Smith
Publisher: CRC Press
ISBN: 1439876762
Category : Technology & Engineering
Languages : en
Pages : 851
Book Description
The completely revised Third Edition to the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from fundamental principles to advanced topics of nanoscale lithography. The book is divided into chapters covering all important aspects related to the imaging, materials, and processes that have been necessary to drive semiconductor lithography toward nanometer-scale generations. Renowned experts from the world’s leading academic and industrial organizations have provided in-depth coverage of the technologies involved in optical, deep-ultraviolet (DUV), immersion, multiple patterning, extreme ultraviolet (EUV), maskless, nanoimprint, and directed self-assembly lithography, together with comprehensive descriptions of the advanced materials and processes involved. New in the Third Edition In addition to the full revision of existing chapters, this new Third Edition features coverage of the technologies that have emerged over the past several years, including multiple patterning lithography, design for manufacturing, design process technology co-optimization, maskless lithography, and directed self-assembly. New advances in lithography modeling are covered as well as fully updated information detailing the new technologies, systems, materials, and processes for optical UV, DUV, immersion, and EUV lithography. The Third Edition of Microlithography: Science and Technology authoritatively covers the science and engineering involved in the latest generations of microlithography and looks ahead to the future systems and technologies that will bring the next generations to fruition. Loaded with illustrations, equations, tables, and time-saving references to the most current technology, this book is the most comprehensive and reliable source for anyone, from student to seasoned professional, looking to better understand the complex world of microlithography science and technology.
Publisher: CRC Press
ISBN: 1439876762
Category : Technology & Engineering
Languages : en
Pages : 851
Book Description
The completely revised Third Edition to the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from fundamental principles to advanced topics of nanoscale lithography. The book is divided into chapters covering all important aspects related to the imaging, materials, and processes that have been necessary to drive semiconductor lithography toward nanometer-scale generations. Renowned experts from the world’s leading academic and industrial organizations have provided in-depth coverage of the technologies involved in optical, deep-ultraviolet (DUV), immersion, multiple patterning, extreme ultraviolet (EUV), maskless, nanoimprint, and directed self-assembly lithography, together with comprehensive descriptions of the advanced materials and processes involved. New in the Third Edition In addition to the full revision of existing chapters, this new Third Edition features coverage of the technologies that have emerged over the past several years, including multiple patterning lithography, design for manufacturing, design process technology co-optimization, maskless lithography, and directed self-assembly. New advances in lithography modeling are covered as well as fully updated information detailing the new technologies, systems, materials, and processes for optical UV, DUV, immersion, and EUV lithography. The Third Edition of Microlithography: Science and Technology authoritatively covers the science and engineering involved in the latest generations of microlithography and looks ahead to the future systems and technologies that will bring the next generations to fruition. Loaded with illustrations, equations, tables, and time-saving references to the most current technology, this book is the most comprehensive and reliable source for anyone, from student to seasoned professional, looking to better understand the complex world of microlithography science and technology.
Smoothed Particle Hydrodynamics
Author: Carlos Alberto Dutra Fraga Filho
Publisher: Springer
ISBN: 3030007731
Category : Science
Languages : en
Pages : 167
Book Description
This book is based on results obtained over a decade of study and research. It questions the use of dynamic molecular models in the continuum scale providing alternative solutions to open problems in the literature. It provides a physical-mathematical understanding of the differential equations that govern fluid flow and energy transport, serving as a reference to the application of Smoothed Particle Hydrodynamics in continuum fluid mechanics and transport phenomena. The physical-mathematical modelling of the problems in the continuum scale and the employment of the SPH method for solving the equations are presented. Examples of applications in continuum fluid mechanics with numerical results and discussions are also provided. This literature defends the concepts of continuum mechanics and the application of boundary treatment techniques that do not violate the laws of physics.
Publisher: Springer
ISBN: 3030007731
Category : Science
Languages : en
Pages : 167
Book Description
This book is based on results obtained over a decade of study and research. It questions the use of dynamic molecular models in the continuum scale providing alternative solutions to open problems in the literature. It provides a physical-mathematical understanding of the differential equations that govern fluid flow and energy transport, serving as a reference to the application of Smoothed Particle Hydrodynamics in continuum fluid mechanics and transport phenomena. The physical-mathematical modelling of the problems in the continuum scale and the employment of the SPH method for solving the equations are presented. Examples of applications in continuum fluid mechanics with numerical results and discussions are also provided. This literature defends the concepts of continuum mechanics and the application of boundary treatment techniques that do not violate the laws of physics.
Reflective Boundary Conditions in SPH Fluid Dynamics Simulation
Author: Carlos Alberto Dutra Fraga Filho
Publisher: Springer Nature
ISBN: 3031715829
Category :
Languages : en
Pages : 112
Book Description
Publisher: Springer Nature
ISBN: 3031715829
Category :
Languages : en
Pages : 112
Book Description
Computational Multiscale Modeling of Fluids and Solids
Author: Martin Oliver Steinhauser
Publisher: Springer Nature
ISBN: 3030989542
Category : Science
Languages : en
Pages : 450
Book Description
The expanded 3rd edition of this established textbook offers an updated overview and review of the computational physics techniques used in materials modelling over different length and time scales. It describes in detail the theory and application of some of the most important methods used to simulate materials across the various levels of spatial and temporal resolution. Quantum mechanical methods such as the Hartree-Fock approximation for solving the Schrödinger equation at the smallest spatial resolution are discussed as well as the Molecular Dynamics and Monte-Carlo methods on the micro- and meso-scale up to macroscopic methods used predominantly in the Engineering world such as Finite Elements (FE) or Smoothed Particle Hydrodynamics (SPH). Extensively updated throughout, this new edition includes additional sections on polymer theory, statistical physics and continuum theory, the latter being the basis of FE methods and SPH. Each chapter now first provides an overview of the key topics covered, with a new “key points” section at the end. The book is aimed at beginning or advanced graduate students who want to enter the field of computational science on multi-scales. It provides an in-depth overview of the basic physical, mathematical and numerical principles for modelling solids and fluids on the micro-, meso-, and macro-scale. With a set of exercises, selected solutions and several case studies, it is a suitable book for students in physics, engineering, and materials science, and a practical reference resource for those already using materials modelling and computational methods in their research.
Publisher: Springer Nature
ISBN: 3030989542
Category : Science
Languages : en
Pages : 450
Book Description
The expanded 3rd edition of this established textbook offers an updated overview and review of the computational physics techniques used in materials modelling over different length and time scales. It describes in detail the theory and application of some of the most important methods used to simulate materials across the various levels of spatial and temporal resolution. Quantum mechanical methods such as the Hartree-Fock approximation for solving the Schrödinger equation at the smallest spatial resolution are discussed as well as the Molecular Dynamics and Monte-Carlo methods on the micro- and meso-scale up to macroscopic methods used predominantly in the Engineering world such as Finite Elements (FE) or Smoothed Particle Hydrodynamics (SPH). Extensively updated throughout, this new edition includes additional sections on polymer theory, statistical physics and continuum theory, the latter being the basis of FE methods and SPH. Each chapter now first provides an overview of the key topics covered, with a new “key points” section at the end. The book is aimed at beginning or advanced graduate students who want to enter the field of computational science on multi-scales. It provides an in-depth overview of the basic physical, mathematical and numerical principles for modelling solids and fluids on the micro-, meso-, and macro-scale. With a set of exercises, selected solutions and several case studies, it is a suitable book for students in physics, engineering, and materials science, and a practical reference resource for those already using materials modelling and computational methods in their research.
Dynamic Behavior of Materials, Volume 1
Author: Bo Song
Publisher: Springer Science & Business Media
ISBN: 3319007718
Category : Technology & Engineering
Languages : en
Pages : 477
Book Description
Dynamic Behavior of Materials, Volume 1: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the first volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers on: General Dynamic Material Properties Novel Dynamic Testing Techniques Dynamic Fracture and Failure Novel Testing Techniques Dynamic Behavior of Geo-materials Dynamic Behavior of Biological and Biomimetic Materials Dynamic Behavior of Composites and Multifunctional Materials Dynamic Behavior of Low-Impedance materials Multi-scale Modeling of Dynamic Behavior of Materials Quantitative Visualization of Dynamic Behavior of Materials Shock/Blast Loading of Materials
Publisher: Springer Science & Business Media
ISBN: 3319007718
Category : Technology & Engineering
Languages : en
Pages : 477
Book Description
Dynamic Behavior of Materials, Volume 1: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the first volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers on: General Dynamic Material Properties Novel Dynamic Testing Techniques Dynamic Fracture and Failure Novel Testing Techniques Dynamic Behavior of Geo-materials Dynamic Behavior of Biological and Biomimetic Materials Dynamic Behavior of Composites and Multifunctional Materials Dynamic Behavior of Low-Impedance materials Multi-scale Modeling of Dynamic Behavior of Materials Quantitative Visualization of Dynamic Behavior of Materials Shock/Blast Loading of Materials
Numerical Analysis of Multiscale Computations
Author: Björn Engquist
Publisher: Springer Science & Business Media
ISBN: 3642219438
Category : Computers
Languages : en
Pages : 432
Book Description
This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.
Publisher: Springer Science & Business Media
ISBN: 3642219438
Category : Computers
Languages : en
Pages : 432
Book Description
This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.
Multiscale Methods
Author: Jacob Fish
Publisher: Oxford University Press
ISBN: 0199233853
Category : Mathematics
Languages : en
Pages : 631
Book Description
Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.
Publisher: Oxford University Press
ISBN: 0199233853
Category : Mathematics
Languages : en
Pages : 631
Book Description
Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.