Author: Luka Peternel
Publisher: Frontiers Media SA
ISBN: 2889633128
Category :
Languages : en
Pages : 229
Book Description
In the past years there has been considerable effort to move robots from industrial environments to our daily lives where they can collaborate and interact with humans to improve our life quality. One of the key challenges in this direction is to make a suitable robot control system that can adapt to humans and interactively learn from humans to facilitate the efficient and safe co-existence of the two. The applications of such robotic systems include: service robotics and physical human-robot collaboration, assistive and rehabilitation robotics, semi-autonomous cars, etc. To achieve the goal of integrating robotic systems into these applications, several important research directions must be explored. One such direction is the study of skill transfer, where a human operator’s skilled executions are used to obtain an autonomous controller. Another important direction is shared control, where a robotic controller and humans control the same body, tool, mechanism, car, etc. Shared control, in turn invokes very rich research questions such as co-adaptation between the human and the robot, where the two agents can benefit from each other’s skills or must adapt to each other’s behavior to achieve effective cooperative task executions. The aim of this Research Topic is to help bridge the gap between the state-of-the-art and above-mentioned goals through novel multidisciplinary approaches in human-in-the-loop robot control and learning.
Human-in-the-Loop Robot Control and Learning
Author: Luka Peternel
Publisher: Frontiers Media SA
ISBN: 2889633128
Category :
Languages : en
Pages : 229
Book Description
In the past years there has been considerable effort to move robots from industrial environments to our daily lives where they can collaborate and interact with humans to improve our life quality. One of the key challenges in this direction is to make a suitable robot control system that can adapt to humans and interactively learn from humans to facilitate the efficient and safe co-existence of the two. The applications of such robotic systems include: service robotics and physical human-robot collaboration, assistive and rehabilitation robotics, semi-autonomous cars, etc. To achieve the goal of integrating robotic systems into these applications, several important research directions must be explored. One such direction is the study of skill transfer, where a human operator’s skilled executions are used to obtain an autonomous controller. Another important direction is shared control, where a robotic controller and humans control the same body, tool, mechanism, car, etc. Shared control, in turn invokes very rich research questions such as co-adaptation between the human and the robot, where the two agents can benefit from each other’s skills or must adapt to each other’s behavior to achieve effective cooperative task executions. The aim of this Research Topic is to help bridge the gap between the state-of-the-art and above-mentioned goals through novel multidisciplinary approaches in human-in-the-loop robot control and learning.
Publisher: Frontiers Media SA
ISBN: 2889633128
Category :
Languages : en
Pages : 229
Book Description
In the past years there has been considerable effort to move robots from industrial environments to our daily lives where they can collaborate and interact with humans to improve our life quality. One of the key challenges in this direction is to make a suitable robot control system that can adapt to humans and interactively learn from humans to facilitate the efficient and safe co-existence of the two. The applications of such robotic systems include: service robotics and physical human-robot collaboration, assistive and rehabilitation robotics, semi-autonomous cars, etc. To achieve the goal of integrating robotic systems into these applications, several important research directions must be explored. One such direction is the study of skill transfer, where a human operator’s skilled executions are used to obtain an autonomous controller. Another important direction is shared control, where a robotic controller and humans control the same body, tool, mechanism, car, etc. Shared control, in turn invokes very rich research questions such as co-adaptation between the human and the robot, where the two agents can benefit from each other’s skills or must adapt to each other’s behavior to achieve effective cooperative task executions. The aim of this Research Topic is to help bridge the gap between the state-of-the-art and above-mentioned goals through novel multidisciplinary approaches in human-in-the-loop robot control and learning.
Learning for Adaptive and Reactive Robot Control
Author: Aude Billard
Publisher: MIT Press
ISBN: 0262367017
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.
Publisher: MIT Press
ISBN: 0262367017
Category : Technology & Engineering
Languages : en
Pages : 425
Book Description
Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.
Human-Robot Interaction Control Using Reinforcement Learning
Author: Wen Yu
Publisher: John Wiley & Sons
ISBN: 1119782740
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
A comprehensive exploration of the control schemes of human-robot interactions In Human-Robot Interaction Control Using Reinforcement Learning, an expert team of authors delivers a concise overview of human-robot interaction control schemes and insightful presentations of novel, model-free and reinforcement learning controllers. The book begins with a brief introduction to state-of-the-art human-robot interaction control and reinforcement learning before moving on to describe the typical environment model. The authors also describe some of the most famous identification techniques for parameter estimation. Human-Robot Interaction Control Using Reinforcement Learning offers rigorous mathematical treatments and demonstrations that facilitate the understanding of control schemes and algorithms. It also describes stability and convergence analysis of human-robot interaction control and reinforcement learning based control. The authors also discuss advanced and cutting-edge topics, like inverse and velocity kinematics solutions, H2 neural control, and likely upcoming developments in the field of robotics. Readers will also enjoy: A thorough introduction to model-based human-robot interaction control Comprehensive explorations of model-free human-robot interaction control and human-in-the-loop control using Euler angles Practical discussions of reinforcement learning for robot position and force control, as well as continuous time reinforcement learning for robot force control In-depth examinations of robot control in worst-case uncertainty using reinforcement learning and the control of redundant robots using multi-agent reinforcement learning Perfect for senior undergraduate and graduate students, academic researchers, and industrial practitioners studying and working in the fields of robotics, learning control systems, neural networks, and computational intelligence, Human-Robot Interaction Control Using Reinforcement Learning is also an indispensable resource for students and professionals studying reinforcement learning.
Publisher: John Wiley & Sons
ISBN: 1119782740
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
A comprehensive exploration of the control schemes of human-robot interactions In Human-Robot Interaction Control Using Reinforcement Learning, an expert team of authors delivers a concise overview of human-robot interaction control schemes and insightful presentations of novel, model-free and reinforcement learning controllers. The book begins with a brief introduction to state-of-the-art human-robot interaction control and reinforcement learning before moving on to describe the typical environment model. The authors also describe some of the most famous identification techniques for parameter estimation. Human-Robot Interaction Control Using Reinforcement Learning offers rigorous mathematical treatments and demonstrations that facilitate the understanding of control schemes and algorithms. It also describes stability and convergence analysis of human-robot interaction control and reinforcement learning based control. The authors also discuss advanced and cutting-edge topics, like inverse and velocity kinematics solutions, H2 neural control, and likely upcoming developments in the field of robotics. Readers will also enjoy: A thorough introduction to model-based human-robot interaction control Comprehensive explorations of model-free human-robot interaction control and human-in-the-loop control using Euler angles Practical discussions of reinforcement learning for robot position and force control, as well as continuous time reinforcement learning for robot force control In-depth examinations of robot control in worst-case uncertainty using reinforcement learning and the control of redundant robots using multi-agent reinforcement learning Perfect for senior undergraduate and graduate students, academic researchers, and industrial practitioners studying and working in the fields of robotics, learning control systems, neural networks, and computational intelligence, Human-Robot Interaction Control Using Reinforcement Learning is also an indispensable resource for students and professionals studying reinforcement learning.
Cognitive Computing for Human-Robot Interaction
Author: Mamta Mittal
Publisher: Academic Press
ISBN: 0323856470
Category : Computers
Languages : en
Pages : 420
Book Description
Cognitive Computing for Human-Robot Interaction: Principles and Practices explores the efforts that should ultimately enable society to take advantage of the often-heralded potential of robots to provide economical and sustainable computing applications. This book discusses each of these applications, presents working implementations, and combines coherent and original deliberative architecture for human–robot interactions (HRI). Supported by experimental results, it shows how explicit knowledge management promises to be instrumental in building richer and more natural HRI, by pushing for pervasive, human-level semantics within the robot's deliberative system for sustainable computing applications. This book will be of special interest to academics, postgraduate students, and researchers working in the area of artificial intelligence and machine learning. Key features: - Introduces several new contributions to the representation and management of humans in autonomous robotic systems; - Explores the potential of cognitive computing, robots, and HRI to generate a deeper understanding and to provide a better contribution from robots to society; - Engages with the potential repercussions of cognitive computing and HRI in the real world. - Introduces several new contributions to the representation and management of humans in an autonomous robotic system - Explores cognitive computing, robots and HRI, presenting a more in-depth understanding to make robots better for society - Gives a challenging approach to those several repercussions of cognitive computing and HRI in the actual global scenario
Publisher: Academic Press
ISBN: 0323856470
Category : Computers
Languages : en
Pages : 420
Book Description
Cognitive Computing for Human-Robot Interaction: Principles and Practices explores the efforts that should ultimately enable society to take advantage of the often-heralded potential of robots to provide economical and sustainable computing applications. This book discusses each of these applications, presents working implementations, and combines coherent and original deliberative architecture for human–robot interactions (HRI). Supported by experimental results, it shows how explicit knowledge management promises to be instrumental in building richer and more natural HRI, by pushing for pervasive, human-level semantics within the robot's deliberative system for sustainable computing applications. This book will be of special interest to academics, postgraduate students, and researchers working in the area of artificial intelligence and machine learning. Key features: - Introduces several new contributions to the representation and management of humans in autonomous robotic systems; - Explores the potential of cognitive computing, robots, and HRI to generate a deeper understanding and to provide a better contribution from robots to society; - Engages with the potential repercussions of cognitive computing and HRI in the real world. - Introduces several new contributions to the representation and management of humans in an autonomous robotic system - Explores cognitive computing, robots and HRI, presenting a more in-depth understanding to make robots better for society - Gives a challenging approach to those several repercussions of cognitive computing and HRI in the actual global scenario
Human-in-the-Loop Machine Learning
Author: Robert Munro
Publisher: Simon and Schuster
ISBN: 1617296740
Category : Computers
Languages : en
Pages : 422
Book Description
Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. Human-in-the-loop machine learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to dreate training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows.
Publisher: Simon and Schuster
ISBN: 1617296740
Category : Computers
Languages : en
Pages : 422
Book Description
Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster. Human-in-the-loop machine learning lays out methods for humans and machines to work together effectively. You'll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You'll learn to dreate training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows.
Trends in Control and Decision-Making for Human–Robot Collaboration Systems
Author: Yue Wang
Publisher: Springer
ISBN: 3319405330
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
This book provides an overview of recent research developments in the automation and control of robotic systems that collaborate with humans. A measure of human collaboration being necessary for the optimal operation of any robotic system, the contributors exploit a broad selection of such systems to demonstrate the importance of the subject, particularly where the environment is prone to uncertainty or complexity. They show how such human strengths as high-level decision-making, flexibility, and dexterity can be combined with robotic precision, and ability to perform task repetitively or in a dangerous environment. The book focuses on quantitative methods and control design for guaranteed robot performance and balanced human experience from both physical human-robot interaction and social human-robot interaction. Its contributions develop and expand upon material presented at various international conferences. They are organized into three parts covering: one-human–one-robot collaboration; one-human–multiple-robot collaboration; and human–swarm collaboration. Individual topic areas include resource optimization (human and robotic), safety in collaboration, human trust in robot and decision-making when collaborating with robots, abstraction of swarm systems to make them suitable for human control, modeling and control of internal force interactions for collaborative manipulation, and the sharing of control between human and automated systems, etc. Control and decision-making algorithms feature prominently in the text, importantly within the context of human factors and the constraints they impose. Applications such as assistive technology, driverless vehicles, cooperative mobile robots, manufacturing robots and swarm robots are considered. Illustrative figures and tables are provided throughout the book. Researchers and students working in controls, and the interaction of humans and robots will learn new methods for human–robot collaboration from this book and will find the cutting edge of the subject described in depth.
Publisher: Springer
ISBN: 3319405330
Category : Technology & Engineering
Languages : en
Pages : 424
Book Description
This book provides an overview of recent research developments in the automation and control of robotic systems that collaborate with humans. A measure of human collaboration being necessary for the optimal operation of any robotic system, the contributors exploit a broad selection of such systems to demonstrate the importance of the subject, particularly where the environment is prone to uncertainty or complexity. They show how such human strengths as high-level decision-making, flexibility, and dexterity can be combined with robotic precision, and ability to perform task repetitively or in a dangerous environment. The book focuses on quantitative methods and control design for guaranteed robot performance and balanced human experience from both physical human-robot interaction and social human-robot interaction. Its contributions develop and expand upon material presented at various international conferences. They are organized into three parts covering: one-human–one-robot collaboration; one-human–multiple-robot collaboration; and human–swarm collaboration. Individual topic areas include resource optimization (human and robotic), safety in collaboration, human trust in robot and decision-making when collaborating with robots, abstraction of swarm systems to make them suitable for human control, modeling and control of internal force interactions for collaborative manipulation, and the sharing of control between human and automated systems, etc. Control and decision-making algorithms feature prominently in the text, importantly within the context of human factors and the constraints they impose. Applications such as assistive technology, driverless vehicles, cooperative mobile robots, manufacturing robots and swarm robots are considered. Illustrative figures and tables are provided throughout the book. Researchers and students working in controls, and the interaction of humans and robots will learn new methods for human–robot collaboration from this book and will find the cutting edge of the subject described in depth.
Human-robot Interaction
Author: Michael A. Goodrich
Publisher: Now Publishers Inc
ISBN: 1601980922
Category : Computers
Languages : en
Pages : 89
Book Description
Presents a unified treatment of HRI-related issues, identifies key themes, and discusses challenge problems that are likely to shape the field in the near future. The survey includes research results from a cross section of the universities, government efforts, industry labs, and countries that contribute to HRI.
Publisher: Now Publishers Inc
ISBN: 1601980922
Category : Computers
Languages : en
Pages : 89
Book Description
Presents a unified treatment of HRI-related issues, identifies key themes, and discusses challenge problems that are likely to shape the field in the near future. The survey includes research results from a cross section of the universities, government efforts, industry labs, and countries that contribute to HRI.
Robot Programming by Demonstration
Author: Sylvain Calinon
Publisher: EPFL Press
ISBN: 9781439808672
Category : Computers
Languages : en
Pages : 248
Book Description
Recent advances in RbD have identified a number of key issues for ensuring a generic approach to the transfer of skills across various agents and contexts. This book focuses on the two generic questions of what to imitate and how to imitate and proposes active teaching methods.
Publisher: EPFL Press
ISBN: 9781439808672
Category : Computers
Languages : en
Pages : 248
Book Description
Recent advances in RbD have identified a number of key issues for ensuring a generic approach to the transfer of skills across various agents and contexts. This book focuses on the two generic questions of what to imitate and how to imitate and proposes active teaching methods.
Modelling Human Motion
Author: Nicoletta Noceti
Publisher: Springer Nature
ISBN: 3030467325
Category : Computers
Languages : en
Pages : 351
Book Description
The new frontiers of robotics research foresee future scenarios where artificial agents will leave the laboratory to progressively take part in the activities of our daily life. This will require robots to have very sophisticated perceptual and action skills in many intelligence-demanding applications, with particular reference to the ability to seamlessly interact with humans. It will be crucial for the next generation of robots to understand their human partners and at the same time to be intuitively understood by them. In this context, a deep understanding of human motion is essential for robotics applications, where the ability to detect, represent and recognize human dynamics and the capability for generating appropriate movements in response sets the scene for higher-level tasks. This book provides a comprehensive overview of this challenging research field, closing the loop between perception and action, and between human-studies and robotics. The book is organized in three main parts. The first part focuses on human motion perception, with contributions analyzing the neural substrates of human action understanding, how perception is influenced by motor control, and how it develops over time and is exploited in social contexts. The second part considers motion perception from the computational perspective, providing perspectives on cutting-edge solutions available from the Computer Vision and Machine Learning research fields, addressing higher-level perceptual tasks. Finally, the third part takes into account the implications for robotics, with chapters on how motor control is achieved in the latest generation of artificial agents and how such technologies have been exploited to favor human-robot interaction. This book considers the complete human-robot cycle, from an examination of how humans perceive motion and act in the world, to models for motion perception and control in artificial agents. In this respect, the book will provide insights into the perception and action loop in humans and machines, joining together aspects that are often addressed in independent investigations. As a consequence, this book positions itself in a field at the intersection of such different disciplines as Robotics, Neuroscience, Cognitive Science, Psychology, Computer Vision, and Machine Learning. By bridging these different research domains, the book offers a common reference point for researchers interested in human motion for different applications and from different standpoints, spanning Neuroscience, Human Motor Control, Robotics, Human-Robot Interaction, Computer Vision and Machine Learning. Chapter 'The Importance of the Affective Component of Movement in Action Understanding' of this book is available open access under a CC BY 4.0 license at link.springer.com.
Publisher: Springer Nature
ISBN: 3030467325
Category : Computers
Languages : en
Pages : 351
Book Description
The new frontiers of robotics research foresee future scenarios where artificial agents will leave the laboratory to progressively take part in the activities of our daily life. This will require robots to have very sophisticated perceptual and action skills in many intelligence-demanding applications, with particular reference to the ability to seamlessly interact with humans. It will be crucial for the next generation of robots to understand their human partners and at the same time to be intuitively understood by them. In this context, a deep understanding of human motion is essential for robotics applications, where the ability to detect, represent and recognize human dynamics and the capability for generating appropriate movements in response sets the scene for higher-level tasks. This book provides a comprehensive overview of this challenging research field, closing the loop between perception and action, and between human-studies and robotics. The book is organized in three main parts. The first part focuses on human motion perception, with contributions analyzing the neural substrates of human action understanding, how perception is influenced by motor control, and how it develops over time and is exploited in social contexts. The second part considers motion perception from the computational perspective, providing perspectives on cutting-edge solutions available from the Computer Vision and Machine Learning research fields, addressing higher-level perceptual tasks. Finally, the third part takes into account the implications for robotics, with chapters on how motor control is achieved in the latest generation of artificial agents and how such technologies have been exploited to favor human-robot interaction. This book considers the complete human-robot cycle, from an examination of how humans perceive motion and act in the world, to models for motion perception and control in artificial agents. In this respect, the book will provide insights into the perception and action loop in humans and machines, joining together aspects that are often addressed in independent investigations. As a consequence, this book positions itself in a field at the intersection of such different disciplines as Robotics, Neuroscience, Cognitive Science, Psychology, Computer Vision, and Machine Learning. By bridging these different research domains, the book offers a common reference point for researchers interested in human motion for different applications and from different standpoints, spanning Neuroscience, Human Motor Control, Robotics, Human-Robot Interaction, Computer Vision and Machine Learning. Chapter 'The Importance of the Affective Component of Movement in Action Understanding' of this book is available open access under a CC BY 4.0 license at link.springer.com.
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management
Author: Vincent G. Duffy
Publisher: Springer Nature
ISBN: 3031610660
Category :
Languages : en
Pages : 430
Book Description
Publisher: Springer Nature
ISBN: 3031610660
Category :
Languages : en
Pages : 430
Book Description