Human Capital Systems, Analytics, and Data Mining

Human Capital Systems, Analytics, and Data Mining PDF Author: Robert C. Hughes
Publisher: CRC Press
ISBN: 1351649701
Category : Business & Economics
Languages : en
Pages : 291

Get Book Here

Book Description
Human Capital Systems, Analytics, and Data Mining provides human capital professionals, researchers, and students with a comprehensive and portable guide to human capital systems, analytics and data mining. The main purpose of this book is to provide a rich tool set of methods and tutorials for Human Capital Management Systems (HCMS) database modeling, analytics, interactive dashboards, and data mining that is independent of any human capital software vendor offerings and is equally usable and portable among both commercial and internally developed HCMS. The book begins with an overview of HCMS, including coverage of human resource systems history and current HCMS Computing Environments. It next explores relational and dimensional database management concepts and principles. HCMS Instructional databases developed by the Author for use in Graduate Level HCMS and Compensation Courses are used for database modeling and dashboard design exercises. Exciting knowledge discovery and research Tutorials and Exercises using Online Analytical Processing (OLAP) and data mining tools through replication of actual original pay equity research by the author are included. New findings concerning Gender Based Pay Equity Research through the lens Comparable Worth and Occupational Mobility are covered extensively in Human Capital Metrics, Analytics and Data Mining Chapters.

Human Capital Systems, Analytics, and Data Mining

Human Capital Systems, Analytics, and Data Mining PDF Author: Robert C. Hughes
Publisher: CRC Press
ISBN: 1351649701
Category : Business & Economics
Languages : en
Pages : 291

Get Book Here

Book Description
Human Capital Systems, Analytics, and Data Mining provides human capital professionals, researchers, and students with a comprehensive and portable guide to human capital systems, analytics and data mining. The main purpose of this book is to provide a rich tool set of methods and tutorials for Human Capital Management Systems (HCMS) database modeling, analytics, interactive dashboards, and data mining that is independent of any human capital software vendor offerings and is equally usable and portable among both commercial and internally developed HCMS. The book begins with an overview of HCMS, including coverage of human resource systems history and current HCMS Computing Environments. It next explores relational and dimensional database management concepts and principles. HCMS Instructional databases developed by the Author for use in Graduate Level HCMS and Compensation Courses are used for database modeling and dashboard design exercises. Exciting knowledge discovery and research Tutorials and Exercises using Online Analytical Processing (OLAP) and data mining tools through replication of actual original pay equity research by the author are included. New findings concerning Gender Based Pay Equity Research through the lens Comparable Worth and Occupational Mobility are covered extensively in Human Capital Metrics, Analytics and Data Mining Chapters.

Human Capital Systems, Analytics, and Data Mining

Human Capital Systems, Analytics, and Data Mining PDF Author: Robert C. Hughes
Publisher: CRC Press
ISBN: 1498764797
Category : Business & Economics
Languages : en
Pages : 295

Get Book Here

Book Description
Human Capital Systems, Analytics, and Data Mining provides human capital professionals, researchers, and students with a comprehensive and portable guide to human capital systems, analytics and data mining. The main purpose of this book is to provide a rich tool set of methods and tutorials for Human Capital Management Systems (HCMS) database modeling, analytics, interactive dashboards, and data mining that is independent of any human capital software vendor offerings and is equally usable and portable among both commercial and internally developed HCMS. The book begins with an overview of HCMS, including coverage of human resource systems history and current HCMS Computing Environments. It next explores relational and dimensional database management concepts and principles. HCMS Instructional databases developed by the Author for use in Graduate Level HCMS and Compensation Courses are used for database modeling and dashboard design exercises. Exciting knowledge discovery and research Tutorials and Exercises using Online Analytical Processing (OLAP) and data mining tools through replication of actual original pay equity research by the author are included. New findings concerning Gender Based Pay Equity Research through the lens Comparable Worth and Occupational Mobility are covered extensively in Human Capital Metrics, Analytics and Data Mining Chapters.

Human Capital Analytics

Human Capital Analytics PDF Author: Gene Pease
Publisher: John Wiley & Sons
ISBN: 1118466764
Category : Business & Economics
Languages : en
Pages : 261

Get Book Here

Book Description
An insightful look at the implementation of advanced analytics on human capital Human capital analytics, also known as human resources analytics or talent analytics, is the application of sophisticated data mining and business analytics techniques to human resources data. Human Capital Analytics provides an in-depth look at the science of human capital analytics, giving practical examples from case studies of companies applying analytics to their people decisions and providing a framework for using predictive analytics to optimize human capital investments. Written by Gene Pease, Boyce Byerly, and Jac Fitz-enz, widely regarded as the father of human capital Offers practical examples from case studies of companies applying analytics to their people decisions An in-depth discussion of tools needed to do the work, particularly focusing on multivariate analysis The challenge of human resources analytics is to identify what data should be captured and how to use the data to model and predict capabilities so the organization gets an optimal return on investment on its human capital. The goal of human capital analytics is to provide an organization with insights for effectively managing employees so that business goals can be reached quickly and efficiently. Written by human capital analytics specialists Gene Pease, Boyce Byerly, and Jac Fitz-enz, Human Capital Analytics provides essential action steps for implementation of advanced analytics on human capital.

Automated Data Analysis Using Excel

Automated Data Analysis Using Excel PDF Author: Brian D. Bissett
Publisher: CRC Press
ISBN: 1000088472
Category : Business & Economics
Languages : en
Pages : 610

Get Book Here

Book Description
This new edition covers some of the key topics relating to the latest version of MS Office through Excel 2019, including the creation of custom ribbons by injecting XML code into Excel Workbooks and how to link Excel VBA macros to customize ribbon objects. It now also provides examples in using ADO, DAO, and SQL queries to retrieve data from databases for analysis. Operations such as fully automated linear and non-linear curve fitting, linear and non-linear mapping, charting, plotting, sorting, and filtering of data have been updated to leverage the newest Excel VBA object models. The text provides examples on automated data analysis and the preparation of custom reports suitable for legal archiving and dissemination. Functionality Demonstrated in This Edition Includes: Find and extract information raw data files Format data in color (conditional formatting) Perform non-linear and linear regressions on data Create custom functions for specific applications Generate datasets for regressions and functions Create custom reports for regulatory agencies Leverage email to send generated reports Return data to Excel using ADO, DAO, and SQL queries Create database files for processed data Create tables, records, and fields in databases Add data to databases in fields or records Leverage external computational engines Call functions in MATLAB® and Origin® from Excel

Data Science and Machine Learning for Non-Programmers

Data Science and Machine Learning for Non-Programmers PDF Author: Dothang Truong
Publisher: CRC Press
ISBN: 1003835619
Category : Business & Economics
Languages : en
Pages : 590

Get Book Here

Book Description
As data continues to grow exponentially, knowledge of data science and machine learning has become more crucial than ever. Machine learning has grown exponentially; however, the abundance of resources can be overwhelming, making it challenging for new learners. This book aims to address this disparity and cater to learners from various non-technical fields, enabling them to utilize machine learning effectively. Adopting a hands-on approach, readers are guided through practical implementations using real datasets and SAS Enterprise Miner, a user-friendly data mining software that requires no programming. Throughout the chapters, two large datasets are used consistently, allowing readers to practice all stages of the data mining process within a cohesive project framework. This book also provides specific guidelines and examples on presenting data mining results and reports, enhancing effective communication with stakeholders. Designed as a guiding companion for both beginners and experienced practitioners, this book targets a wide audience, including students, lecturers, researchers, and industry professionals from various backgrounds.

Knowledge Guided Machine Learning

Knowledge Guided Machine Learning PDF Author: Anuj Karpatne
Publisher: CRC Press
ISBN: 1000598101
Category : Business & Economics
Languages : en
Pages : 442

Get Book Here

Book Description
Given their tremendous success in commercial applications, machine learning (ML) models are increasingly being considered as alternatives to science-based models in many disciplines. Yet, these "black-box" ML models have found limited success due to their inability to work well in the presence of limited training data and generalize to unseen scenarios. As a result, there is a growing interest in the scientific community on creating a new generation of methods that integrate scientific knowledge in ML frameworks. This emerging field, called scientific knowledge-guided ML (KGML), seeks a distinct departure from existing "data-only" or "scientific knowledge-only" methods to use knowledge and data at an equal footing. Indeed, KGML involves diverse scientific and ML communities, where researchers and practitioners from various backgrounds and application domains are continually adding richness to the problem formulations and research methods in this emerging field. Knowledge Guided Machine Learning: Accelerating Discovery using Scientific Knowledge and Data provides an introduction to this rapidly growing field by discussing some of the common themes of research in KGML using illustrative examples, case studies, and reviews from diverse application domains and research communities as book chapters by leading researchers. KEY FEATURES First-of-its-kind book in an emerging area of research that is gaining widespread attention in the scientific and data science fields Accessible to a broad audience in data science and scientific and engineering fields Provides a coherent organizational structure to the problem formulations and research methods in the emerging field of KGML using illustrative examples from diverse application domains Contains chapters by leading researchers, which illustrate the cutting-edge research trends, opportunities, and challenges in KGML research from multiple perspectives Enables cross-pollination of KGML problem formulations and research methods across disciplines Highlights critical gaps that require further investigation by the broader community of researchers and practitioners to realize the full potential of KGML

Introduction to Computational Health Informatics

Introduction to Computational Health Informatics PDF Author: Arvind Kumar Bansal
Publisher: CRC Press
ISBN: 1000761592
Category : Medical
Languages : en
Pages : 784

Get Book Here

Book Description
This class-tested textbook is designed for a semester-long graduate or senior undergraduate course on Computational Health Informatics. The focus of the book is on computational techniques that are widely used in health data analysis and health informatics and it integrates computer science and clinical perspectives. This book prepares computer science students for careers in computational health informatics and medical data analysis. Features Integrates computer science and clinical perspectives Describes various statistical and artificial intelligence techniques, including machine learning techniques such as clustering of temporal data, regression analysis, neural networks, HMM, decision trees, SVM, and data mining, all of which are techniques used widely used in health-data analysis Describes computational techniques such as multidimensional and multimedia data representation and retrieval, ontology, patient-data deidentification, temporal data analysis, heterogeneous databases, medical image analysis and transmission, biosignal analysis, pervasive healthcare, automated text-analysis, health-vocabulary knowledgebases and medical information-exchange Includes bioinformatics and pharmacokinetics techniques and their applications to vaccine and drug development

Industrial Applications of Machine Learning

Industrial Applications of Machine Learning PDF Author: Pedro Larrañaga
Publisher: CRC Press
ISBN: 135112837X
Category : Business & Economics
Languages : en
Pages : 349

Get Book Here

Book Description
Industrial Applications of Machine Learning shows how machine learning can be applied to address real-world problems in the fourth industrial revolution, and provides the required knowledge and tools to empower readers to build their own solutions based on theory and practice. The book introduces the fourth industrial revolution and its current impact on organizations and society. It explores machine learning fundamentals, and includes four case studies that address a real-world problem in the manufacturing or logistics domains, and approaches machine learning solutions from an application-oriented point of view. The book should be of special interest to researchers interested in real-world industrial problems. Features Describes the opportunities, challenges, issues, and trends offered by the fourth industrial revolution Provides a user-friendly introduction to machine learning with examples of cutting-edge applications in different industrial sectors Includes four case studies addressing real-world industrial problems solved with machine learning techniques A dedicated website for the book contains the datasets of the case studies for the reader's reproduction, enabling the groundwork for future problem-solving Uses of three of the most widespread software and programming languages within the engineering and data science communities, namely R, Python, and Weka

Human Capital

Human Capital PDF Author: Sally Coleman Selden
Publisher: CQ Press
ISBN: 1483370968
Category : Political Science
Languages : en
Pages : 295

Get Book Here

Book Description
With the shift from "human resources" to "human capital management" (HCM), public agencies are striving to strategically manage their workforces. Sally Selden’s groundbreaking book moves far beyond describing best practices and offers the context in which innovative practices have been implemented. She details how agencies are creating performance-aligned workforces by adopting systems and policies that are driven by their strategic missions. This book covers core topics of personnel courses—including hiring, training, retention, performance, and recognition—but also includes integrated coverage on measuring success through assessment. Further helping readers grasp how HCM works, the book uses original data from the Government Performance Project and incorporates many comparative examples across a wide range of states, plus federal and municipal agencies. Unlike anything else available, Human Capital fills a critical gap for both students and public personnel professionals.

Predictive Analytics for Human Resources

Predictive Analytics for Human Resources PDF Author: Jac Fitz-enz
Publisher: John Wiley & Sons
ISBN: 1118893670
Category : Business & Economics
Languages : en
Pages : 180

Get Book Here

Book Description
Create and run a human resource analytics project with confidence For any human resource professional that wants to harness the power of analytics, this essential resource answers the questions: "Where do I start?" and "What tools are available?" Predictive Analytics for Human Resources is designed to answer these and other vital questions. The book explains the basics of every business—the vision, the brand, and the culture, and shows how predictive analytics supports them. The authors put the focus on the fundamentals of predictability and include a framework of logical questions to help set up an analytic program or project, then follow up by offering a clear explanation of statistical applications. Predictive Analytics for Human Resources is a how-to guide filled with practical and targeted advice. The book starts with the basic idea of engaging in predictive analytics and walks through case simulations showing statistical examples. In addition, this important resource addresses the topics of internal coaching, mentoring, and sponsoring and includes information on how to recruit a sponsor. In the book, you'll find: A comprehensive guide to developing and implementing a human resource analytics project Illustrative examples that show how to go to market, develop a leadership model, and link it to financial targets through causal modeling Explanations of the ten steps required in building an analytics function How to add value through analysis of systems such as staffing, training, and retention For anyone who wants to launch an analytics project or program for HR, this complete guide provides the information and instruction to get started the right way.