Author: Carl Wieman
Publisher: Harvard University Press
ISBN: 0674978927
Category : Science
Languages : en
Pages : 179
Book Description
Too many universities remain wedded to outmoded ways of teaching science in spite of extensive research showing that there are much more effective methods. Too few departments ask whether what happens in their lecture halls is effective at helping students to learn and how they can encourage their faculty to teach better. But real change is possible, and Carl Wieman shows us how it can be brought about. Improving How Universities Teach Science draws on Wieman’s unparalleled experience to provide a blueprint for educators seeking sustainable improvements in science teaching. Wieman created the Science Education Initiative (SEI), a program implemented across thirteen science departments at the universities of Colorado and British Columbia, to support the widespread adoption of the best research-based approaches to science teaching. The program’s data show that in the most successful departments 90 percent of faculty adopted better methods. Wieman identifies what factors helped and hindered the adoption of good teaching methods. He also gives detailed, effective, and tested strategies for departments and institutions to measure and improve the quality of their teaching while limiting the demands on faculty time. Among all of the commentary addressing shortcomings in higher education, Wieman’s lessons on improving teaching and learning stand out. His analysis and solutions are not limited to just one lecture hall or course but deal with changing entire departments and universities. For those who want to improve how universities teach science to the next generation, Wieman’s work is a critical first step.
Improving How Universities Teach Science
Author: Carl Wieman
Publisher: Harvard University Press
ISBN: 0674978927
Category : Science
Languages : en
Pages : 179
Book Description
Too many universities remain wedded to outmoded ways of teaching science in spite of extensive research showing that there are much more effective methods. Too few departments ask whether what happens in their lecture halls is effective at helping students to learn and how they can encourage their faculty to teach better. But real change is possible, and Carl Wieman shows us how it can be brought about. Improving How Universities Teach Science draws on Wieman’s unparalleled experience to provide a blueprint for educators seeking sustainable improvements in science teaching. Wieman created the Science Education Initiative (SEI), a program implemented across thirteen science departments at the universities of Colorado and British Columbia, to support the widespread adoption of the best research-based approaches to science teaching. The program’s data show that in the most successful departments 90 percent of faculty adopted better methods. Wieman identifies what factors helped and hindered the adoption of good teaching methods. He also gives detailed, effective, and tested strategies for departments and institutions to measure and improve the quality of their teaching while limiting the demands on faculty time. Among all of the commentary addressing shortcomings in higher education, Wieman’s lessons on improving teaching and learning stand out. His analysis and solutions are not limited to just one lecture hall or course but deal with changing entire departments and universities. For those who want to improve how universities teach science to the next generation, Wieman’s work is a critical first step.
Publisher: Harvard University Press
ISBN: 0674978927
Category : Science
Languages : en
Pages : 179
Book Description
Too many universities remain wedded to outmoded ways of teaching science in spite of extensive research showing that there are much more effective methods. Too few departments ask whether what happens in their lecture halls is effective at helping students to learn and how they can encourage their faculty to teach better. But real change is possible, and Carl Wieman shows us how it can be brought about. Improving How Universities Teach Science draws on Wieman’s unparalleled experience to provide a blueprint for educators seeking sustainable improvements in science teaching. Wieman created the Science Education Initiative (SEI), a program implemented across thirteen science departments at the universities of Colorado and British Columbia, to support the widespread adoption of the best research-based approaches to science teaching. The program’s data show that in the most successful departments 90 percent of faculty adopted better methods. Wieman identifies what factors helped and hindered the adoption of good teaching methods. He also gives detailed, effective, and tested strategies for departments and institutions to measure and improve the quality of their teaching while limiting the demands on faculty time. Among all of the commentary addressing shortcomings in higher education, Wieman’s lessons on improving teaching and learning stand out. His analysis and solutions are not limited to just one lecture hall or course but deal with changing entire departments and universities. For those who want to improve how universities teach science to the next generation, Wieman’s work is a critical first step.
Powerful Ideas of Science and How to Teach Them
Author: Jasper Green
Publisher: Routledge
ISBN: 042958170X
Category : Education
Languages : en
Pages : 215
Book Description
A bullet dropped and a bullet fired from a gun will reach the ground at the same time. Plants get the majority of their mass from the air around them, not the soil beneath them. A smartphone is made from more elements than you. Every day, science teachers get the opportunity to blow students’ minds with counter-intuitive, crazy ideas like these. But getting students to understand and remember the science that explains these observations is complex. To help, this book explores how to plan and teach science lessons so that students and teachers are thinking about the right things – that is, the scientific ideas themselves. It introduces you to 13 powerful ideas of science that have the ability to transform how young people see themselves and the world around them. Each chapter tells the story of one powerful idea and how to teach it alongside examples and non-examples from biology, chemistry and physics to show what great science teaching might look like and why. Drawing on evidence about how students learn from cognitive science and research from science education, the book takes you on a journey of how to plan and teach science lessons so students acquire scientific ideas in meaningful ways. Emphasising the important relationship between curriculum, pedagogy and the subject itself, this exciting book will help you teach in a way that captivates and motivates students, allowing them to share in the delight and wonder of the explanatory power of science.
Publisher: Routledge
ISBN: 042958170X
Category : Education
Languages : en
Pages : 215
Book Description
A bullet dropped and a bullet fired from a gun will reach the ground at the same time. Plants get the majority of their mass from the air around them, not the soil beneath them. A smartphone is made from more elements than you. Every day, science teachers get the opportunity to blow students’ minds with counter-intuitive, crazy ideas like these. But getting students to understand and remember the science that explains these observations is complex. To help, this book explores how to plan and teach science lessons so that students and teachers are thinking about the right things – that is, the scientific ideas themselves. It introduces you to 13 powerful ideas of science that have the ability to transform how young people see themselves and the world around them. Each chapter tells the story of one powerful idea and how to teach it alongside examples and non-examples from biology, chemistry and physics to show what great science teaching might look like and why. Drawing on evidence about how students learn from cognitive science and research from science education, the book takes you on a journey of how to plan and teach science lessons so students acquire scientific ideas in meaningful ways. Emphasising the important relationship between curriculum, pedagogy and the subject itself, this exciting book will help you teach in a way that captivates and motivates students, allowing them to share in the delight and wonder of the explanatory power of science.
The Chicago Guide to College Science Teaching
Author: Terry McGlynn
Publisher: University of Chicago Press
ISBN: 022654253X
Category : Science
Languages : en
Pages : 211
Book Description
Higher education is a strange beast. Teaching is a critical skill for scientists in academia, yet one that is barely touched upon in their professional training—despite being a substantial part of their career. This book is a practical guide for anyone teaching STEM-related academic disciplines at the college level, from graduate students teaching lab sections and newly appointed faculty to well-seasoned professors in want of fresh ideas. Terry McGlynn’s straightforward, no-nonsense approach avoids off-putting pedagogical jargon and enables instructors to become true ambassadors for science. For years, McGlynn has been addressing the need for practical and accessible advice for college science teachers through his popular blog Small Pond Science. Now he has gathered this advice as an easy read—one that can be ingested and put to use on short deadline. Readers will learn about topics ranging from creating a syllabus and developing grading rubrics to mastering online teaching and ensuring safety during lab and fieldwork. The book also offers advice on cultivating productive relationships with students, teaching assistants, and colleagues.
Publisher: University of Chicago Press
ISBN: 022654253X
Category : Science
Languages : en
Pages : 211
Book Description
Higher education is a strange beast. Teaching is a critical skill for scientists in academia, yet one that is barely touched upon in their professional training—despite being a substantial part of their career. This book is a practical guide for anyone teaching STEM-related academic disciplines at the college level, from graduate students teaching lab sections and newly appointed faculty to well-seasoned professors in want of fresh ideas. Terry McGlynn’s straightforward, no-nonsense approach avoids off-putting pedagogical jargon and enables instructors to become true ambassadors for science. For years, McGlynn has been addressing the need for practical and accessible advice for college science teachers through his popular blog Small Pond Science. Now he has gathered this advice as an easy read—one that can be ingested and put to use on short deadline. Readers will learn about topics ranging from creating a syllabus and developing grading rubrics to mastering online teaching and ensuring safety during lab and fieldwork. The book also offers advice on cultivating productive relationships with students, teaching assistants, and colleagues.
Teach Now! Science
Author: Tom Sherrington
Publisher: Routledge
ISBN: 1317664906
Category : Education
Languages : en
Pages : 228
Book Description
Being taught by a great teacher is one of the great privileges of life. Teach Now! is an exciting new series that opens up the secrets of great teachers and, step-by-step, helps trainees to build the skills and confidence they need to become first-rate classroom practitioners. Written by a highly-skilled practitioner, this practical, classroom-focused guide contains all the support you need to become a great science teacher. Combining a grounded, modern rationale for learning and teaching with highly practical training approaches, the book guides you through all the different aspects of science teaching offering clear, straightforward advice on classroom practice, lesson planning and working in schools. Teaching and learning, planning, assessment and behaviour management are all covered in detail, with a host of carefully chosen examples used to demonstrate good practice. There are also chapters on organising practical work, the science curriculum, key ideas that underpin science as a subject and finding the right job. Throughout the book, there is a wide selection of ready-to-use activities, strategies and techniques to help you bring science alive in all three main disciplines, including common experiments and demonstrations from biology, physics and chemistry to engage and inspire you and your students. Celebrating the whole process of engaging young people with the awe and wonder of science, this book is your essential guide as you start your exciting and rewarding career as an outstanding science teacher.
Publisher: Routledge
ISBN: 1317664906
Category : Education
Languages : en
Pages : 228
Book Description
Being taught by a great teacher is one of the great privileges of life. Teach Now! is an exciting new series that opens up the secrets of great teachers and, step-by-step, helps trainees to build the skills and confidence they need to become first-rate classroom practitioners. Written by a highly-skilled practitioner, this practical, classroom-focused guide contains all the support you need to become a great science teacher. Combining a grounded, modern rationale for learning and teaching with highly practical training approaches, the book guides you through all the different aspects of science teaching offering clear, straightforward advice on classroom practice, lesson planning and working in schools. Teaching and learning, planning, assessment and behaviour management are all covered in detail, with a host of carefully chosen examples used to demonstrate good practice. There are also chapters on organising practical work, the science curriculum, key ideas that underpin science as a subject and finding the right job. Throughout the book, there is a wide selection of ready-to-use activities, strategies and techniques to help you bring science alive in all three main disciplines, including common experiments and demonstrations from biology, physics and chemistry to engage and inspire you and your students. Celebrating the whole process of engaging young people with the awe and wonder of science, this book is your essential guide as you start your exciting and rewarding career as an outstanding science teacher.
Taking Science to School
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309133831
Category : Education
Languages : en
Pages : 404
Book Description
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
Publisher: National Academies Press
ISBN: 0309133831
Category : Education
Languages : en
Pages : 404
Book Description
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
Visible Learning and the Science of How We Learn
Author: John Hattie
Publisher: Routledge
ISBN: 113464311X
Category : Education
Languages : en
Pages : 368
Book Description
On publication in 2009 John Hattie’s Visible Learning presented the biggest ever collection of research into what actually work in schools to improve children’s learning. Not what was fashionable, not what political and educational vested interests wanted to champion, but what actually produced the best results in terms of improving learning and educational outcomes. It became an instant bestseller and was described by the TES as revealing education’s ‘holy grail’. Now in this latest book, John Hattie has joined forces with cognitive psychologist Greg Yates to build on the original data and legacy of the Visible Learning project, showing how it’s underlying ideas and the cutting edge of cognitive science can form a powerful and complimentary framework for shaping learning in the classroom and beyond. Visible Learning and the Science of How We Learn explains the major principles and strategies of learning, outlining why it can be so hard sometimes, and yet easy on other occasions. Aimed at teachers and students, it is written in an accessible and engaging style and can be read cover to cover, or used on a chapter-by-chapter basis for essay writing or staff development. The book is structured in three parts – ‘learning within classrooms’, ‘learning foundations’, which explains the cognitive building blocks of knowledge acquisition and ‘know thyself’ which explores, confidence and self-knowledge. It also features extensive interactive appendices containing study guide questions to encourage critical thinking, annotated bibliographic entries with recommendations for further reading, links to relevant websites and YouTube clips. Throughout, the authors draw upon the latest international research into how the learning process works and how to maximise impact on students, covering such topics as: teacher personality; expertise and teacher-student relationships; how knowledge is stored and the impact of cognitive load; thinking fast and thinking slow; the psychology of self-control; the role of conversation at school and at home; invisible gorillas and the IKEA effect; digital native theory; myths and fallacies about how people learn. This fascinating book is aimed at any student, teacher or parent requiring an up-to-date commentary on how research into human learning processes can inform our teaching and what goes on in our schools. It takes a broad sweep through findings stemming mainly from social and cognitive psychology and presents them in a useable format for students and teachers at all levels, from preschool to tertiary training institutes.
Publisher: Routledge
ISBN: 113464311X
Category : Education
Languages : en
Pages : 368
Book Description
On publication in 2009 John Hattie’s Visible Learning presented the biggest ever collection of research into what actually work in schools to improve children’s learning. Not what was fashionable, not what political and educational vested interests wanted to champion, but what actually produced the best results in terms of improving learning and educational outcomes. It became an instant bestseller and was described by the TES as revealing education’s ‘holy grail’. Now in this latest book, John Hattie has joined forces with cognitive psychologist Greg Yates to build on the original data and legacy of the Visible Learning project, showing how it’s underlying ideas and the cutting edge of cognitive science can form a powerful and complimentary framework for shaping learning in the classroom and beyond. Visible Learning and the Science of How We Learn explains the major principles and strategies of learning, outlining why it can be so hard sometimes, and yet easy on other occasions. Aimed at teachers and students, it is written in an accessible and engaging style and can be read cover to cover, or used on a chapter-by-chapter basis for essay writing or staff development. The book is structured in three parts – ‘learning within classrooms’, ‘learning foundations’, which explains the cognitive building blocks of knowledge acquisition and ‘know thyself’ which explores, confidence and self-knowledge. It also features extensive interactive appendices containing study guide questions to encourage critical thinking, annotated bibliographic entries with recommendations for further reading, links to relevant websites and YouTube clips. Throughout, the authors draw upon the latest international research into how the learning process works and how to maximise impact on students, covering such topics as: teacher personality; expertise and teacher-student relationships; how knowledge is stored and the impact of cognitive load; thinking fast and thinking slow; the psychology of self-control; the role of conversation at school and at home; invisible gorillas and the IKEA effect; digital native theory; myths and fallacies about how people learn. This fascinating book is aimed at any student, teacher or parent requiring an up-to-date commentary on how research into human learning processes can inform our teaching and what goes on in our schools. It takes a broad sweep through findings stemming mainly from social and cognitive psychology and presents them in a useable format for students and teachers at all levels, from preschool to tertiary training institutes.
Ambitious Science Teaching
Author: Mark Windschitl
Publisher: Harvard Education Press
ISBN: 1682531643
Category : Education
Languages : en
Pages : 455
Book Description
2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.
Publisher: Harvard Education Press
ISBN: 1682531643
Category : Education
Languages : en
Pages : 455
Book Description
2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.
Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices
Author: Christina V. Schwarz
Publisher: NSTA Press
ISBN: 1941316956
Category : Education
Languages : en
Pages : 393
Book Description
When it’s time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what’s different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K–12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework’s initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you.
Publisher: NSTA Press
ISBN: 1941316956
Category : Education
Languages : en
Pages : 393
Book Description
When it’s time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what’s different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K–12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework’s initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you.
Deep Knowledge
Author: Douglas B. Larkin
Publisher: Teachers College Press
ISBN: 0807771929
Category : Education
Languages : en
Pages : 177
Book Description
Deep Knowledge is a book about how peoples ideas change as they learn to teach. Using the experiences of six middle and high school student teachers as they learn to teach science in diverse classrooms, Larkin explores how their work changes the way they think about students, society, schools, and science itself. Through engaging case stories, Deep Knowledge challenges some commonly held assumptions about learning to teach and tackles problems inherent in many teacher education programs. This book digs deep into the details of teacher learning in a way seldom attempted in teacher education textbooks.
Publisher: Teachers College Press
ISBN: 0807771929
Category : Education
Languages : en
Pages : 177
Book Description
Deep Knowledge is a book about how peoples ideas change as they learn to teach. Using the experiences of six middle and high school student teachers as they learn to teach science in diverse classrooms, Larkin explores how their work changes the way they think about students, society, schools, and science itself. Through engaging case stories, Deep Knowledge challenges some commonly held assumptions about learning to teach and tackles problems inherent in many teacher education programs. This book digs deep into the details of teacher learning in a way seldom attempted in teacher education textbooks.
Grasp
Author: Sanjay Sarma
Publisher: Anchor
ISBN: 038554183X
Category : Science
Languages : en
Pages : 351
Book Description
How do we learn? And how can we learn better? In this groundbreaking look at the science of learning, Sanjay Sarma, head of Open Learning at MIT, shows how we can harness this knowledge to discover our true potential. Drawing from his own experience as an educator as well as the work of researchers and innovators at MIT and beyond, in Grasp, Sarma explores the history of modern education, tracing the way in which traditional classroom methods—lecture, homework, test, repeat—became the norm and showing why things needs to change. The book takes readers across multiple frontiers, from fundamental neuroscience to cognitive psychology and beyond, as it considers the future of learning. It introduces scientists who study forgetting, exposing it not as a simple failure of memory but as a critical weapon in our learning arsenal. It examines the role curiosity plays in promoting a state of “readiness to learn” in the brain (and its troublesome twin, “unreadiness to learn”). And it reveals how such ideas are being put into practice in the real world, such as at unorthodox new programs like Ad Astra, located on the SpaceX campus. Along the way, Grasp debunks long-held views such as the noxious idea of “learning styles,” equipping readers with practical tools for absorbing and retaining information across a lifetime of learning.
Publisher: Anchor
ISBN: 038554183X
Category : Science
Languages : en
Pages : 351
Book Description
How do we learn? And how can we learn better? In this groundbreaking look at the science of learning, Sanjay Sarma, head of Open Learning at MIT, shows how we can harness this knowledge to discover our true potential. Drawing from his own experience as an educator as well as the work of researchers and innovators at MIT and beyond, in Grasp, Sarma explores the history of modern education, tracing the way in which traditional classroom methods—lecture, homework, test, repeat—became the norm and showing why things needs to change. The book takes readers across multiple frontiers, from fundamental neuroscience to cognitive psychology and beyond, as it considers the future of learning. It introduces scientists who study forgetting, exposing it not as a simple failure of memory but as a critical weapon in our learning arsenal. It examines the role curiosity plays in promoting a state of “readiness to learn” in the brain (and its troublesome twin, “unreadiness to learn”). And it reveals how such ideas are being put into practice in the real world, such as at unorthodox new programs like Ad Astra, located on the SpaceX campus. Along the way, Grasp debunks long-held views such as the noxious idea of “learning styles,” equipping readers with practical tools for absorbing and retaining information across a lifetime of learning.