Hot Coal Gas Desulfurization with Manganese-based Sorbents. Quarterly Report, October--December 1993

Hot Coal Gas Desulfurization with Manganese-based Sorbents. Quarterly Report, October--December 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 15

Get Book Here

Book Description
The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al2O3) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Fifth Quarterly Report documents progress in pellet testing via thermogravimetric analysis of pellet formulation FORM4-A of a manganese ore/alumina combination. This formulation, described more fully in the Quarterly Technical Progress Report of October 15, 1993, consists of manganese carbonate combined with alundum. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration; however, a minor problem has arisen during the regeneration cycle in that sulfur tends to form and plug the exit tube during the early stage of regeneration. This problem is about to be overcome by increasing the flow rate of air during the regeneration cycle resulting in more oxidizing conditions and hence less tendency for sulfide sulfur (S{sup =}) to oxidize to the intermediate elemental form (S{sup o}) rather than to 4-valent (S{sup +4}).

Hot Coal Gas Desulfurization with Manganese-based Sorbents. Quarterly Report, October--December 1993

Hot Coal Gas Desulfurization with Manganese-based Sorbents. Quarterly Report, October--December 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 15

Get Book Here

Book Description
The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al2O3) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Fifth Quarterly Report documents progress in pellet testing via thermogravimetric analysis of pellet formulation FORM4-A of a manganese ore/alumina combination. This formulation, described more fully in the Quarterly Technical Progress Report of October 15, 1993, consists of manganese carbonate combined with alundum. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration; however, a minor problem has arisen during the regeneration cycle in that sulfur tends to form and plug the exit tube during the early stage of regeneration. This problem is about to be overcome by increasing the flow rate of air during the regeneration cycle resulting in more oxidizing conditions and hence less tendency for sulfide sulfur (S{sup =}) to oxidize to the intermediate elemental form (S{sup o}) rather than to 4-valent (S{sup +4}).

Hot Coal Gas Desulfurization with Manganese Based Sorbents. Quarterly Report, August 1, 1993--September 30, 1993

Hot Coal Gas Desulfurization with Manganese Based Sorbents. Quarterly Report, August 1, 1993--September 30, 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Get Book Here

Book Description
The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al2O3) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This report documents progress in pelletizing and testing via thermogravimetric analysis of individual pellet formulations of manganese ore/alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. Preliminary results indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

Hot Coal Gas Desulfurization with Manganese-based Sorbents. Second [quarterly] Technical Report, December 1, 1992--March 1, 1993

Hot Coal Gas Desulfurization with Manganese-based Sorbents. Second [quarterly] Technical Report, December 1, 1992--March 1, 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 36

Get Book Here

Book Description
At present, the focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicate that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al2O3) may be a preferable alternative to zinc-based sorbents. A significant domestic source of manganese in Minnesota is being explored for an in situ leach process which has potential for producing large tonnages of solutions which may be ideal for precipitation and recovery of pure manganese as a carbonate in a reactive form. In the current program the following studies will be addressed: Preparation of manganese sorbent pellets and characterization tests on pellets for strength and surface area; analysis of the thermodynamics and kinetics of sulfur removal from hot fuel gases by individual sorbent pellets (loading tests) by thermogravimetric testing; regeneration tests via TGA on individual sorbent pellets by oxidation; and bench-scale testing on sorbent beds in a two-inch diameter reactor. The developed information will be of value to METC in its determination of whether or not a manganese-based regenerable sorbent holds real promise for sulfur cleanup of hot fuel gases. This information is necessary prior to pilot-scale testing leading to commercial development is undertaken.

Kinetics of Mn-based Sorbents for Hot Coal Gas Desulfurization. Quarterly Report, December 15, 1993--March 15, 1997

Kinetics of Mn-based Sorbents for Hot Coal Gas Desulfurization. Quarterly Report, December 15, 1993--March 15, 1997 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 24

Get Book Here

Book Description
Manganese-based sorbents have been investigated for the removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases prior to its use in combined cycle turbines. Four formulations of Mn-based sorbents were tested in an ambient-pressure fixed-bed reactor to determine steady state H2S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. In previous reports, the sulfidation and regeneration results from cyclic testing done at 600°C were presented. Manganese-based sorbents, with molar ratios> 1:1 Mn:Substrate were effective in reducing the H2S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent. Regeneration tests determined that loaded pellets can be fully regenerated in air/steam mixture at 750°C with minimal sulfate formation. In this report, the results from cyclic crush strength tests, Sulfur profile tests and cyclic testing at 550°C and lower flowrate cyclic testing are presented. Crush strength testing done after 5 cycles showed decreases in strength from 12.6% to 57.9%. Cyclic testing at 550°C showed pre breakthrough concentrations as low as 10 ppmv. Cyclic testing done at 2 L/min and 3 L/min did not show any significant difference in pre breakthrough concentrations or capacity.

Hot Coal Gas Desulfurization with Manganese Based Sorbents. Quarterly Report, June-September 1994

Hot Coal Gas Desulfurization with Manganese Based Sorbents. Quarterly Report, June-September 1994 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782

Get Book Here

Book Description


Hot Coal Gas Desulfurization with Manganese-based Sorbents. Annual Report, September 1992--September 1993

Hot Coal Gas Desulfurization with Manganese-based Sorbents. Annual Report, September 1992--September 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 108

Get Book Here

Book Description
The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al2O3) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Annual Topical Report documents progress in pelletizing and testing via thermo-gravimetric analysis of individual pellet formulations of manganese ore/ alumina combinations and also manganese carbonate/alumina with two binders, dextrin and bentonite. It includes the prior Quarterly Technical Reports which indicate that the manganese carbonate material, being of higher purity than the manganese ore, has a higher degree of sulfur capacity and more rapid absorption kinetics. A 2-inch fixed-bed reactor has been fabricated and is now ready for subjecting pellets to cyclic loading and regeneration.

Hot Coal Gas Desulfurization with Manganese-based Sorbents. Quarterly Report, April--June 1994

Hot Coal Gas Desulfurization with Manganese-based Sorbents. Quarterly Report, April--June 1994 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description
The focus of work being performed on Hot Coal Gas Desulfurization at the Morgantown Energy Technology Center is primarily in the use of zinc titanate sorbents; however, prior studies indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt% ore + 25 wt% Al2O3) appears to be a strong contender to zincbased sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc; hence, it is not as likely to undergo zinc-depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron; hence, the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Also manganese chlorides are much less stable and volatile than zinc chlorides. Potential also exists for utilization of manganese at higher temperatures than zinc ferrite or zinc titanate. This Seventh Quarterly Report documents progress in bench-scale testing of a leading manganese-based sorbent pellets (FORM4-A). This formulation is a high-purity manganese carbonate-based material. This formulation was subjected to 20 consecutive cycles of sulfidation and regeneration at 900°C in a 2-inch fixed bed reactor. The sulfidation gas was a simulated Tampella U-gas with an increased hydrogen sulfide content of 3% by volume to accelerate the rate of breakthrough, arbitrarily taken as 500 ppmv. Consistent with thermo-gravimetric analysis (TGA) on individual pellets, the fixed bed tests show small improvement in capacity and kinetics with the sulfur-loading capacity being about 22% by weight of the original pellet, which corresponds to approximately 90% bed utilization!

Kinetics of Mn-based Sorbents for Hot Coal Gas Desulfurization. Quarterly Report, September 15 - December 15, 1996

Kinetics of Mn-based Sorbents for Hot Coal Gas Desulfurization. Quarterly Report, September 15 - December 15, 1996 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 22

Get Book Here

Book Description
Manganese-based sorbents have been investigated for the removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases prior to its use in combined cycle turbines. Four formulations of Mn-based sorbents were tested in an ambient-pressure fixed-bed reactor to determine steady state H2S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. In a previous report, the sulfidation results were presented. Manganese-based sorbents with molar ratios> 1:1 Mn:Substrate were effective in reducing the H2S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent. In this report, the regeneration results will be presented. Regeneration tests determined that loaded pellets can be fully regenerated in air/steam mixture at 750°C with minimal sulfate formation. 16 refs., 9 figs., 5 tabs.

Hot Coal Gas Desulfurization with Manganese-based Sorbents. Progress Report, April 1, 1993--June 30, 1993

Hot Coal Gas Desulfurization with Manganese-based Sorbents. Progress Report, April 1, 1993--June 30, 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 22

Get Book Here

Book Description
Focus of work is primarily in use of zinc ferrite and zinc titanate sorbents; however, an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al2O3) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc, hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. Thermodynamic analysis of the system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or titanate. This report gives the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work is limited to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and enduration to produce reactive pellets.