Author: J. M. Boardman
Publisher: Springer
ISBN: 3540377999
Category : Mathematics
Languages : en
Pages : 268
Book Description
Homotopy Invariant Algebraic Structures on Topological Spaces
Author: J. M. Boardman
Publisher: Springer
ISBN: 3540377999
Category : Mathematics
Languages : en
Pages : 268
Book Description
Publisher: Springer
ISBN: 3540377999
Category : Mathematics
Languages : en
Pages : 268
Book Description
Homotopy Invariant Algebraic Structures on Topological Spaces
Author: J. M. Boardman
Publisher:
ISBN: 9783662176238
Category :
Languages : en
Pages : 272
Book Description
Publisher:
ISBN: 9783662176238
Category :
Languages : en
Pages : 272
Book Description
Homotopy Invariant Algebraic Structures
Author: Jean-Pierre Meyer
Publisher: American Mathematical Soc.
ISBN: 082181057X
Category : Mathematics
Languages : en
Pages : 392
Book Description
This volume presents the proceedings of the conference held in honor of J. Michael Boardman's 60th birthday. It brings into print his classic work on conditionally convergent spectral sequences. Over the past 30 years, it has become evident that some of the deepest questions in algebra are best understood against the background of homotopy theory. Boardman and Vogt's theory of homotopy-theoretic algebraic structures and the theory of spectra, for example, were two benchmark breakthroughs underlying the development of algebraic $K$-theory and the recent advances in the theory of motives. The volume begins with short notes by Mac Lane, May, Stasheff, and others on the early and recent history of the subject. But the bulk of the volume consists of research papers on topics that have been strongly influenced by Boardman's work. Articles give readers a vivid sense of the current state of the theory of "homotopy-invariant algebraic structures". Also included are two major foundational papers by Goerss and Strickland on applications of methods of algebra (i.e., Dieudonné modules and formal schemes) to problems of topology. Boardman is known for the depth and wit of his ideas. This volume is intended to reflect and to celebrate those fine characteristics.
Publisher: American Mathematical Soc.
ISBN: 082181057X
Category : Mathematics
Languages : en
Pages : 392
Book Description
This volume presents the proceedings of the conference held in honor of J. Michael Boardman's 60th birthday. It brings into print his classic work on conditionally convergent spectral sequences. Over the past 30 years, it has become evident that some of the deepest questions in algebra are best understood against the background of homotopy theory. Boardman and Vogt's theory of homotopy-theoretic algebraic structures and the theory of spectra, for example, were two benchmark breakthroughs underlying the development of algebraic $K$-theory and the recent advances in the theory of motives. The volume begins with short notes by Mac Lane, May, Stasheff, and others on the early and recent history of the subject. But the bulk of the volume consists of research papers on topics that have been strongly influenced by Boardman's work. Articles give readers a vivid sense of the current state of the theory of "homotopy-invariant algebraic structures". Also included are two major foundational papers by Goerss and Strickland on applications of methods of algebra (i.e., Dieudonné modules and formal schemes) to problems of topology. Boardman is known for the depth and wit of his ideas. This volume is intended to reflect and to celebrate those fine characteristics.
A Concise Course in Algebraic Topology
Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Operads in Algebra, Topology and Physics
Author: Martin Markl
Publisher: American Mathematical Soc.
ISBN: 0821843621
Category : Mathematics
Languages : en
Pages : 362
Book Description
Operads are mathematical devices which describe algebraic structures of many varieties and in various categories. From their beginnings in the 1960s, they have developed to encompass such areas as combinatorics, knot theory, moduli spaces, string field theory and deformation quantization.
Publisher: American Mathematical Soc.
ISBN: 0821843621
Category : Mathematics
Languages : en
Pages : 362
Book Description
Operads are mathematical devices which describe algebraic structures of many varieties and in various categories. From their beginnings in the 1960s, they have developed to encompass such areas as combinatorics, knot theory, moduli spaces, string field theory and deformation quantization.
Categorical Decomposition Techniques in Algebraic Topology
Author: Gregory Arone
Publisher: Birkhäuser
ISBN: 303487863X
Category : Mathematics
Languages : en
Pages : 304
Book Description
The book consists of articles at the frontier of current research in Algebraic Topology. It presents recent results by top notch experts, and is intended primarily for researchers and graduate students working in the field of algebraic topology. Included is an important article by Cohen, Johnes and Yan on the homology of the space of smooth loops on a manifold M, endowed with the Chas-Sullivan intersection product, as well as an article by Goerss, Henn and Mahowald on stable homotopy groups of spheres, which uses the cutting edge technology of "topological modular forms".
Publisher: Birkhäuser
ISBN: 303487863X
Category : Mathematics
Languages : en
Pages : 304
Book Description
The book consists of articles at the frontier of current research in Algebraic Topology. It presents recent results by top notch experts, and is intended primarily for researchers and graduate students working in the field of algebraic topology. Included is an important article by Cohen, Johnes and Yan on the homology of the space of smooth loops on a manifold M, endowed with the Chas-Sullivan intersection product, as well as an article by Goerss, Henn and Mahowald on stable homotopy groups of spheres, which uses the cutting edge technology of "topological modular forms".
Counterexamples in Topology
Author: Lynn Arthur Steen
Publisher: Courier Corporation
ISBN: 0486319296
Category : Mathematics
Languages : en
Pages : 274
Book Description
Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.
Publisher: Courier Corporation
ISBN: 0486319296
Category : Mathematics
Languages : en
Pages : 274
Book Description
Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.
Handbook of Algebra
Author: M. Hazewinkel
Publisher: Elsevier
ISBN: 0080569412
Category : Mathematics
Languages : en
Pages : 577
Book Description
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed. - Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes
Publisher: Elsevier
ISBN: 0080569412
Category : Mathematics
Languages : en
Pages : 577
Book Description
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed. - Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes
Algebraic Topology, Aarhus 1978
Author: J. L. Dupont
Publisher: Springer
ISBN: 3540385207
Category : Mathematics
Languages : en
Pages : 705
Book Description
University of Aarhus, 50. Anniversary, 11 September 1978
Publisher: Springer
ISBN: 3540385207
Category : Mathematics
Languages : en
Pages : 705
Book Description
University of Aarhus, 50. Anniversary, 11 September 1978
Complex Cobordism and Stable Homotopy Groups of Spheres
Author: Douglas C. Ravenel
Publisher: American Mathematical Society
ISBN: 1470472937
Category : Mathematics
Languages : en
Pages : 417
Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.
Publisher: American Mathematical Society
ISBN: 1470472937
Category : Mathematics
Languages : en
Pages : 417
Book Description
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects of the classical Adams spectral sequence and its modifications, which are the main tools topologists have to investigate the homotopy groups of spheres. Nowadays, the most efficient tools are the Brown-Peterson theory, the Adams-Novikov spectral sequence, and the chromatic spectral sequence, a device for analyzing the global structure of the stable homotopy groups of spheres and relating them to the cohomology of the Morava stabilizer groups. These topics are described in detail in Chapters 4 to 6. The revamped Chapter 7 is the computational payoff of the book, yielding a lot of information about the stable homotopy group of spheres. Appendices follow, giving self-contained accounts of the theory of formal group laws and the homological algebra associated with Hopf algebras and Hopf algebroids. The book is intended for anyone wishing to study computational stable homotopy theory. It is accessible to graduate students with a knowledge of algebraic topology and recommended to anyone wishing to venture into the frontiers of the subject.