Author: Robert E. O'Malley
Publisher: Springer
ISBN: 3319119249
Category : Mathematics
Languages : en
Pages : 263
Book Description
This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.
Historical Developments in Singular Perturbations
Author: Robert E. O'Malley
Publisher: Springer
ISBN: 3319119249
Category : Mathematics
Languages : en
Pages : 263
Book Description
This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.
Publisher: Springer
ISBN: 3319119249
Category : Mathematics
Languages : en
Pages : 263
Book Description
This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.
Methods and Applications of Singular Perturbations
Author: Ferdinand Verhulst
Publisher: Springer Science & Business Media
ISBN: 0387283137
Category : Mathematics
Languages : en
Pages : 332
Book Description
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach
Publisher: Springer Science & Business Media
ISBN: 0387283137
Category : Mathematics
Languages : en
Pages : 332
Book Description
Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach
Singular Perturbation Methods for Ordinary Differential Equations
Author: Robert E., Jr. O'Malley
Publisher: Springer Science & Business Media
ISBN: 1461209773
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book results from various lectures given in recent years. Early drafts were used for several single semester courses on singular perturbation meth ods given at Rensselaer, and a more complete version was used for a one year course at the Technische Universitat Wien. Some portions have been used for short lecture series at Universidad Central de Venezuela, West Vir ginia University, the University of Southern California, the University of California at Davis, East China Normal University, the University of Texas at Arlington, Universita di Padova, and the University of New Hampshire, among other places. As a result, I've obtained lots of valuable feedback from students and listeners, for which I am grateful. This writing continues a pattern. Earlier lectures at Bell Laboratories, at the University of Edin burgh and New York University, and at the Australian National University led to my earlier works (1968, 1974, and 1978). All seem to have been useful for the study of singular perturbations, and I hope the same will be true of this monograph. I've personally learned much from reading and analyzing the works of others, so I would especially encourage readers to treat this book as an introduction to a diverse and exciting literature. The topic coverage selected is personal and reflects my current opin ions. An attempt has been made to encourage a consistent method of ap proaching problems, largely through correcting outer limits in regions of rapid change. Formal proofs of correctness are not emphasized.
Publisher: Springer Science & Business Media
ISBN: 1461209773
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book results from various lectures given in recent years. Early drafts were used for several single semester courses on singular perturbation meth ods given at Rensselaer, and a more complete version was used for a one year course at the Technische Universitat Wien. Some portions have been used for short lecture series at Universidad Central de Venezuela, West Vir ginia University, the University of Southern California, the University of California at Davis, East China Normal University, the University of Texas at Arlington, Universita di Padova, and the University of New Hampshire, among other places. As a result, I've obtained lots of valuable feedback from students and listeners, for which I am grateful. This writing continues a pattern. Earlier lectures at Bell Laboratories, at the University of Edin burgh and New York University, and at the Australian National University led to my earlier works (1968, 1974, and 1978). All seem to have been useful for the study of singular perturbations, and I hope the same will be true of this monograph. I've personally learned much from reading and analyzing the works of others, so I would especially encourage readers to treat this book as an introduction to a diverse and exciting literature. The topic coverage selected is personal and reflects my current opin ions. An attempt has been made to encourage a consistent method of ap proaching problems, largely through correcting outer limits in regions of rapid change. Formal proofs of correctness are not emphasized.
Singular Perturbations and Boundary Layers
Author: Gung-Min Gie
Publisher: Springer
ISBN: 3030006387
Category : Mathematics
Languages : en
Pages : 424
Book Description
Singular perturbations occur when a small coefficient affects the highest order derivatives in a system of partial differential equations. From the physical point of view singular perturbations generate in the system under consideration thin layers located often but not always at the boundary of the domains that are called boundary layers or internal layers if the layer is located inside the domain. Important physical phenomena occur in boundary layers. The most common boundary layers appear in fluid mechanics, e.g., the flow of air around an airfoil or a whole airplane, or the flow of air around a car. Also in many instances in geophysical fluid mechanics, like the interface of air and earth, or air and ocean. This self-contained monograph is devoted to the study of certain classes of singular perturbation problems mostly related to thermic, fluid mechanics and optics and where mostly elliptic or parabolic equations in a bounded domain are considered. This book is a fairly unique resource regarding the rigorous mathematical treatment of boundary layer problems. The explicit methodology developed in this book extends in many different directions the concept of correctors initially introduced by J. L. Lions, and in particular the lower- and higher-order error estimates of asymptotic expansions are obtained in the setting of functional analysis. The review of differential geometry and treatment of boundary layers in a curved domain is an additional strength of this book. In the context of fluid mechanics, the outstanding open problem of the vanishing viscosity limit of the Navier-Stokes equations is investigated in this book and solved for a number of particular, but physically relevant cases. This book will serve as a unique resource for those studying singular perturbations and boundary layer problems at the advanced graduate level in mathematics or applied mathematics and may be useful for practitioners in other related fields in science and engineering such as aerodynamics, fluid mechanics, geophysical fluid mechanics, acoustics and optics.
Publisher: Springer
ISBN: 3030006387
Category : Mathematics
Languages : en
Pages : 424
Book Description
Singular perturbations occur when a small coefficient affects the highest order derivatives in a system of partial differential equations. From the physical point of view singular perturbations generate in the system under consideration thin layers located often but not always at the boundary of the domains that are called boundary layers or internal layers if the layer is located inside the domain. Important physical phenomena occur in boundary layers. The most common boundary layers appear in fluid mechanics, e.g., the flow of air around an airfoil or a whole airplane, or the flow of air around a car. Also in many instances in geophysical fluid mechanics, like the interface of air and earth, or air and ocean. This self-contained monograph is devoted to the study of certain classes of singular perturbation problems mostly related to thermic, fluid mechanics and optics and where mostly elliptic or parabolic equations in a bounded domain are considered. This book is a fairly unique resource regarding the rigorous mathematical treatment of boundary layer problems. The explicit methodology developed in this book extends in many different directions the concept of correctors initially introduced by J. L. Lions, and in particular the lower- and higher-order error estimates of asymptotic expansions are obtained in the setting of functional analysis. The review of differential geometry and treatment of boundary layers in a curved domain is an additional strength of this book. In the context of fluid mechanics, the outstanding open problem of the vanishing viscosity limit of the Navier-Stokes equations is investigated in this book and solved for a number of particular, but physically relevant cases. This book will serve as a unique resource for those studying singular perturbations and boundary layer problems at the advanced graduate level in mathematics or applied mathematics and may be useful for practitioners in other related fields in science and engineering such as aerodynamics, fluid mechanics, geophysical fluid mechanics, acoustics and optics.
Singular Perturbation Theory
Author: Lindsay A. Skinner
Publisher: Springer Science & Business Media
ISBN: 1441999582
Category : Mathematics
Languages : en
Pages : 95
Book Description
This book is a rigorous presentation of the method of matched asymptotic expansions, the primary tool for attacking singular perturbation problems. A knowledge of conventional asymptotic analysis is assumed. The first chapter introduces the theory and is followed by four chapters of applications to ordinary differential equation problems of increasing complexity. Exercises are included as well as several Maple programs for computing the terms of the various asymptotic expansions that arise in solving the problems.
Publisher: Springer Science & Business Media
ISBN: 1441999582
Category : Mathematics
Languages : en
Pages : 95
Book Description
This book is a rigorous presentation of the method of matched asymptotic expansions, the primary tool for attacking singular perturbation problems. A knowledge of conventional asymptotic analysis is assumed. The first chapter introduces the theory and is followed by four chapters of applications to ordinary differential equation problems of increasing complexity. Exercises are included as well as several Maple programs for computing the terms of the various asymptotic expansions that arise in solving the problems.
Multiple Scale and Singular Perturbation Methods
Author: J.K. Kevorkian
Publisher: Springer
ISBN: 0387942025
Category : Mathematics
Languages : en
Pages : 634
Book Description
This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.
Publisher: Springer
ISBN: 0387942025
Category : Mathematics
Languages : en
Pages : 634
Book Description
This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.
Selected Papers of Norman Levinson
Author: J.A. Nohel
Publisher: Springer Science & Business Media
ISBN: 9780817638627
Category : Mathematics
Languages : en
Pages : 584
Book Description
The deep and original ideas of Norman Levinson have had a lasting impact on fields as diverse as differential & integral equations, harmonic, complex & stochas tic analysis, and analytic number theory during more than half a century. Yet, the extent of his contributions has not always been fully recognized in the mathematics community. For example, the horseshoe mapping constructed by Stephen Smale in 1960 played a central role in the development of the modern theory of dynami cal systems and chaos. The horseshoe map was directly stimulated by Levinson's research on forced periodic oscillations of the Van der Pol oscillator, and specifi cally by his seminal work initiated by Cartwright and Littlewood. In other topics, Levinson provided the foundation for a rigorous theory of singularly perturbed dif ferential equations. He also made fundamental contributions to inverse scattering theory by showing the connection between scattering data and spectral data, thus relating the famous Gel'fand-Levitan method to the inverse scattering problem for the Schrodinger equation. He was the first to analyze and make explicit use of wave functions, now widely known as the Jost functions. Near the end of his life, Levinson returned to research in analytic number theory and made profound progress on the resolution of the Riemann Hypothesis. Levinson's papers are typically tightly crafted and masterpieces of brevity and clarity. It is our hope that the publication of these selected papers will bring his mathematical ideas to the attention of the larger mathematical community.
Publisher: Springer Science & Business Media
ISBN: 9780817638627
Category : Mathematics
Languages : en
Pages : 584
Book Description
The deep and original ideas of Norman Levinson have had a lasting impact on fields as diverse as differential & integral equations, harmonic, complex & stochas tic analysis, and analytic number theory during more than half a century. Yet, the extent of his contributions has not always been fully recognized in the mathematics community. For example, the horseshoe mapping constructed by Stephen Smale in 1960 played a central role in the development of the modern theory of dynami cal systems and chaos. The horseshoe map was directly stimulated by Levinson's research on forced periodic oscillations of the Van der Pol oscillator, and specifi cally by his seminal work initiated by Cartwright and Littlewood. In other topics, Levinson provided the foundation for a rigorous theory of singularly perturbed dif ferential equations. He also made fundamental contributions to inverse scattering theory by showing the connection between scattering data and spectral data, thus relating the famous Gel'fand-Levitan method to the inverse scattering problem for the Schrodinger equation. He was the first to analyze and make explicit use of wave functions, now widely known as the Jost functions. Near the end of his life, Levinson returned to research in analytic number theory and made profound progress on the resolution of the Riemann Hypothesis. Levinson's papers are typically tightly crafted and masterpieces of brevity and clarity. It is our hope that the publication of these selected papers will bring his mathematical ideas to the attention of the larger mathematical community.
Singular Perturbation Methods in Control
Author: Petar Kokotovic
Publisher: SIAM
ISBN: 9781611971118
Category : Mathematics
Languages : en
Pages : 386
Book Description
Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.
Publisher: SIAM
ISBN: 9781611971118
Category : Mathematics
Languages : en
Pages : 386
Book Description
Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.
The Theory of Singular Perturbations
Author: E.M. de Jager
Publisher: Elsevier
ISBN: 0080542751
Category : Mathematics
Languages : en
Pages : 353
Book Description
The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed.The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathematical justification of these methods. The latter implies a priori estimates of solutions of differential equations; this involves the application of Gronwall's lemma, maximum principles, energy integrals, fixed point theorems and Gåding's theorem for general elliptic equations. These features make the book of value to mathematicians and researchers in the engineering sciences, interested in the mathematical justification of formal approximations of solutions of practical perturbation problems. The text is selfcontained and each chapter is concluded with some exercises.
Publisher: Elsevier
ISBN: 0080542751
Category : Mathematics
Languages : en
Pages : 353
Book Description
The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed.The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathematical justification of these methods. The latter implies a priori estimates of solutions of differential equations; this involves the application of Gronwall's lemma, maximum principles, energy integrals, fixed point theorems and Gåding's theorem for general elliptic equations. These features make the book of value to mathematicians and researchers in the engineering sciences, interested in the mathematical justification of formal approximations of solutions of practical perturbation problems. The text is selfcontained and each chapter is concluded with some exercises.
Nonlinear Problems in Aviation and Aerospace
Author: S. Sivasundaram
Publisher: CRC Press
ISBN: 9789056992224
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
The study of nonlinear phenomena in aviation and aerospace includes developments in computer technology and the use of nonlinear mathematical models. Nonlinearities are a feature of aircraft dynamics and flight control systems and need to respond to achieve stability and performance. This multiauthor volume comprises selected papers from the conference Nonlinear Problems in Aviation and Aerospace at Embry-Riddle Aeronautical University and additional invited papers from many distinguished scientists. Coverage includes orbit determination of a tethered satellite system using laser and radar tracking, and intelligent control of agile aircraft, flight control with and without control surfaces.
Publisher: CRC Press
ISBN: 9789056992224
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
The study of nonlinear phenomena in aviation and aerospace includes developments in computer technology and the use of nonlinear mathematical models. Nonlinearities are a feature of aircraft dynamics and flight control systems and need to respond to achieve stability and performance. This multiauthor volume comprises selected papers from the conference Nonlinear Problems in Aviation and Aerospace at Embry-Riddle Aeronautical University and additional invited papers from many distinguished scientists. Coverage includes orbit determination of a tethered satellite system using laser and radar tracking, and intelligent control of agile aircraft, flight control with and without control surfaces.