Hilbert Schemes of Points and Infinite Dimensional Lie Algebras

Hilbert Schemes of Points and Infinite Dimensional Lie Algebras PDF Author: Zhenbo Qin
Publisher: American Mathematical Soc.
ISBN: 1470441888
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
Hilbert schemes, which parametrize subschemes in algebraic varieties, have been extensively studied in algebraic geometry for the last 50 years. The most interesting class of Hilbert schemes are schemes of collections of points (zero-dimensional subschemes) in a smooth algebraic surface . Schemes turn out to be closely related to many areas of mathematics, such as algebraic combinatorics, integrable systems, representation theory, and mathematical physics, among others. This book surveys recent developments of the theory of Hilbert schemes of points on complex surfaces and its interplay with infinite dimensional Lie algebras. It starts with the basics of Hilbert schemes of points and presents in detail an example of Hilbert schemes of points on the projective plane. Then the author turns to the study of cohomology of , including the construction of the action of infinite dimensional Lie algebras on this cohomology, the ring structure of cohomology, equivariant cohomology of and the Gromov–Witten correspondence. The last part of the book presents results about quantum cohomology of and related questions. The book is of interest to graduate students and researchers in algebraic geometry, representation theory, combinatorics, topology, number theory, and theoretical physics.

Hilbert Schemes of Points and Infinite Dimensional Lie Algebras

Hilbert Schemes of Points and Infinite Dimensional Lie Algebras PDF Author: Zhenbo Qin
Publisher: American Mathematical Soc.
ISBN: 1470441888
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
Hilbert schemes, which parametrize subschemes in algebraic varieties, have been extensively studied in algebraic geometry for the last 50 years. The most interesting class of Hilbert schemes are schemes of collections of points (zero-dimensional subschemes) in a smooth algebraic surface . Schemes turn out to be closely related to many areas of mathematics, such as algebraic combinatorics, integrable systems, representation theory, and mathematical physics, among others. This book surveys recent developments of the theory of Hilbert schemes of points on complex surfaces and its interplay with infinite dimensional Lie algebras. It starts with the basics of Hilbert schemes of points and presents in detail an example of Hilbert schemes of points on the projective plane. Then the author turns to the study of cohomology of , including the construction of the action of infinite dimensional Lie algebras on this cohomology, the ring structure of cohomology, equivariant cohomology of and the Gromov–Witten correspondence. The last part of the book presents results about quantum cohomology of and related questions. The book is of interest to graduate students and researchers in algebraic geometry, representation theory, combinatorics, topology, number theory, and theoretical physics.

Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory

Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory PDF Author: Stephen Berman
Publisher: American Mathematical Soc.
ISBN: 0821827162
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
Because of its many applications to mathematics and mathematical physics, the representation theory of infinite-dimensional Lie and quantized enveloping algebras comprises an important area of current research. This volume includes articles from the proceedings of an international conference, ``Infinite-Dimensional Lie Theory and Conformal Field Theory'', held at the University of Virginia. Many of the contributors to the volume are prominent researchers in the field. Thisconference provided an opportunity for mathematicians and physicists to interact in an active research area of mutual interest. The talks focused on recent developments in the representation theory of affine, quantum affine, and extended affine Lie algebras and Lie superalgebras. They also highlightedapplications to conformal field theory, integrable and disordered systems. Some of the articles are expository and accessible to a broad readership of mathematicians and physicists interested in this area; others are research articles that are appropriate for more advanced readers.

Lectures on Hilbert Schemes of Points on Surfaces

Lectures on Hilbert Schemes of Points on Surfaces PDF Author: Hiraku Nakajima
Publisher: American Mathematical Soc.
ISBN: 0821819569
Category : Mathematics
Languages : en
Pages : 146

Get Book Here

Book Description
It has been realized that Hilbert schemes originally studied in algebraic geometry are closely related to several branches of mathematics, such as singularities, symplectic geometry, representation theory - even theoretical physics. This book reflects this feature of Hilbert schemes.

Jordan Structures in Lie Algebras

Jordan Structures in Lie Algebras PDF Author: Antonio Fernández López
Publisher: American Mathematical Soc.
ISBN: 1470450860
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
Explores applications of Jordan theory to the theory of Lie algebras. After presenting the general theory of nonassociative algebras and of Lie algebras, the book then explains how properties of the Jordan algebra attached to a Jordan element of a Lie algebra can be used to reveal properties of the Lie algebra itself.

Analytic Number Theory, Approximation Theory, and Special Functions

Analytic Number Theory, Approximation Theory, and Special Functions PDF Author: Gradimir V. Milovanović
Publisher: Springer
ISBN: 149390258X
Category : Mathematics
Languages : en
Pages : 873

Get Book Here

Book Description
This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.

Algebraic Structures and Moduli Spaces

Algebraic Structures and Moduli Spaces PDF Author: Jacques Hurtubise
Publisher: American Mathematical Soc.
ISBN: 0821835688
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
This book contains recent and exciting developments on the structure of moduli spaces, with an emphasis on the algebraic structures that underlie this structure. Topics covered include Hilbert schemes of points, moduli of instantons, coherent sheaves and their derived categories, moduli of flat connections, Hodge structures, and the topology of affine varieties. Two beautiful series of lectures are a particularly fine feature of the book. One is an introductory series by Manfred Lehn on the topology and geometry of Hilbert schemes of points on surfaces, and the other, by Hiraku Nakajima and Kota Yoshioka, explains their recent work on the moduli space of instantons over ${\mathbb R 4$. The material is suitable for graduate students and researchers interested in moduli spaces in algebraic geometry, topology, and mathematical physics.

One-Dimensional Turbulence and the Stochastic Burgers Equation

One-Dimensional Turbulence and the Stochastic Burgers Equation PDF Author: Alexandre Boritchev
Publisher: American Mathematical Soc.
ISBN: 1470464365
Category : Education
Languages : en
Pages : 192

Get Book Here

Book Description
This book is dedicated to the qualitative theory of the stochastic one-dimensional Burgers equation with small viscosity under periodic boundary conditions and to interpreting the obtained results in terms of one-dimensional turbulence in a fictitious one-dimensional fluid described by the Burgers equation. The properties of one-dimensional turbulence which we rigorously derive are then compared with the heuristic Kolmogorov theory of hydrodynamical turbulence, known as the K41 theory. It is shown, in particular, that these properties imply natural one-dimensional analogues of three principal laws of the K41 theory: the size of the Kolmogorov inner scale, the 2/3 2/3-law, and the Kolmogorov–Obukhov law. The first part of the book deals with the stochastic Burgers equation, including the inviscid limit for the equation, its asymptotic in time behavior, and a theory of generalised L 1 L1-solutions. This section makes a self-consistent introduction to stochastic PDEs. The relative simplicity of the model allows us to present in a light form many of the main ideas from the general theory of this field. The second part, dedicated to the relation of one-dimensional turbulence with the K41 theory, could serve for a mathematical reader as a rigorous introduction to the literature on hydrodynamical turbulence, all of which is written on a physical level of rigor.

Hopf Algebras and Root Systems

Hopf Algebras and Root Systems PDF Author: István Heckenberger
Publisher: American Mathematical Soc.
ISBN: 1470452324
Category : Education
Languages : en
Pages : 606

Get Book Here

Book Description
This book is an introduction to Hopf algebras in braided monoidal categories with applications to Hopf algebras in the usual sense. The main goal of the book is to present from scratch and with complete proofs the theory of Nichols algebras (or quantum symmetric algebras) and the surprising relationship between Nichols algebras and generalized root systems. In general, Nichols algebras are not classified by Cartan graphs and their root systems. However, extending partial results in the literature, the authors were able to associate a Cartan graph to a large class of Nichols algebras. This allows them to determine the structure of right coideal subalgebras of Nichols systems which generalize Nichols algebras. As applications of these results, the book contains a classification of right coideal subalgebras of quantum groups and of the small quantum groups, and a proof of the existence of PBW-bases that does not involve case by case considerations. The authors also include short chapter summaries at the beginning of each chapter and historical notes at the end of each chapter. The theory of Cartan graphs, Weyl groupoids, and generalized root systems appears here for the first time in a book form. Hence, the book serves as an introduction to the modern classification theory of pointed Hopf algebras for advanced graduate students and researchers working in categorial aspects and classification theory of Hopf algebras and their generalization.

Vector Bundles and Representation Theory

Vector Bundles and Representation Theory PDF Author: Steven Dale Cutkosky
Publisher: American Mathematical Soc.
ISBN: 0821832646
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
This volume contains 13 papers from the conference on ``Hilbert Schemes, Vector Bundles and Their Interplay with Representation Theory''. The papers are written by leading mathematicians in algebraic geometry and representation theory and present the latest developments in the field. Among other contributions, the volume includes several very impressive and elegant theorems in representation theory by R. Friedman and J. W. Morgan, convolution on homology groups of moduli spaces of sheaves on K3 surfaces by H. Nakajima, and computation of the $S1$ fixed points in Quot-schemes and mirror principle computations for Grassmanians by S.-T. Yau, et al. The book is of interest to graduate students and researchers in algebraic geometry, representation theory, topology and their applications to high energy physics.

Perverse Sheaves and Applications to Representation Theory

Perverse Sheaves and Applications to Representation Theory PDF Author: Pramod N. Achar
Publisher: American Mathematical Soc.
ISBN: 1470455978
Category : Education
Languages : en
Pages : 562

Get Book Here

Book Description
Since its inception around 1980, the theory of perverse sheaves has been a vital tool of fundamental importance in geometric representation theory. This book, which aims to make this theory accessible to students and researchers, is divided into two parts. The first six chapters give a comprehensive account of constructible and perverse sheaves on complex algebraic varieties, including such topics as Artin's vanishing theorem, smooth descent, and the nearby cycles functor. This part of the book also has a chapter on the equivariant derived category, and brief surveys of side topics including étale and ℓ-adic sheaves, D-modules, and algebraic stacks. The last four chapters of the book show how to put this machinery to work in the context of selected topics in geometric representation theory: Kazhdan-Lusztig theory; Springer theory; the geometric Satake equivalence; and canonical bases for quantum groups. Recent developments such as the p-canonical basis are also discussed. The book has more than 250 exercises, many of which focus on explicit calculations with concrete examples. It also features a 4-page “Quick Reference” that summarizes the most commonly used facts for computations, similar to a table of integrals in a calculus textbook.