High-Resolution Crystal Plasticity Simulations

High-Resolution Crystal Plasticity Simulations PDF Author: Martin Diehl
Publisher: Apprimus Wissenschaftsverlag
ISBN: 386359410X
Category : Technology & Engineering
Languages : en
Pages : 138

Get Book Here

Book Description
In this work the possibilities and capabilities of high-resolution crystal plasticity simulations are presented and discussed. Giving several examples, it is shown how the application of crystal plasticity simulations helps to understand the micro-mechanical behaviour of crystalline materials. To avoid the high computational costs associated with crystal plasticity simulations that arise from (i) the evaluation of the selected constitutive law, and (ii) the solution of the associated mechanical boundary value problem, both contributions to the runtime have to be kept small. This is done by (i) employing a rather simple—and therefore fast—constitutive model, and by (ii) using an effective spectral method employing fast Fourier transforms for solving the partial differential equations describing the mechanical behaviour. Here, an improved spectral solver incorporated into the Düsseldorf Advanced Material Simulation Kit (DAMASK) is used.

High-Resolution Crystal Plasticity Simulations

High-Resolution Crystal Plasticity Simulations PDF Author: Martin Diehl
Publisher: Apprimus Wissenschaftsverlag
ISBN: 386359410X
Category : Technology & Engineering
Languages : en
Pages : 138

Get Book Here

Book Description
In this work the possibilities and capabilities of high-resolution crystal plasticity simulations are presented and discussed. Giving several examples, it is shown how the application of crystal plasticity simulations helps to understand the micro-mechanical behaviour of crystalline materials. To avoid the high computational costs associated with crystal plasticity simulations that arise from (i) the evaluation of the selected constitutive law, and (ii) the solution of the associated mechanical boundary value problem, both contributions to the runtime have to be kept small. This is done by (i) employing a rather simple—and therefore fast—constitutive model, and by (ii) using an effective spectral method employing fast Fourier transforms for solving the partial differential equations describing the mechanical behaviour. Here, an improved spectral solver incorporated into the Düsseldorf Advanced Material Simulation Kit (DAMASK) is used.

High-Resolution Crystal Plasticity Simulations

High-Resolution Crystal Plasticity Simulations PDF Author: Martin Diehl
Publisher:
ISBN: 9783863593926
Category :
Languages : en
Pages : 128

Get Book Here

Book Description


Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods PDF Author: Franz Roters
Publisher: John Wiley & Sons
ISBN: 3527642099
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Cyclic Plasticity of Engineering Materials

Cyclic Plasticity of Engineering Materials PDF Author: Guozheng Kang
Publisher: John Wiley & Sons
ISBN: 1119180805
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book Here

Book Description
New contributions to the cyclic plasticity of engineering materials Written by leading experts in the field, this book provides an authoritative and comprehensive introduction to cyclic plasticity of metals, polymers, composites and shape memory alloys. Each chapter is devoted to fundamentals of cyclic plasticity or to one of the major classes of materials, thereby providing a wide coverage of the field. The book deals with experimental observations on metals, composites, polymers and shape memory alloys, and the corresponding cyclic plasticity models for metals, polymers, particle reinforced metal matrix composites and shape memory alloys. Also, the thermo-mechanical coupled cyclic plasticity models are discussed for metals and shape memory alloys. Key features: Provides a comprehensive introduction to cyclic plasticity Presents Macroscopic and microscopic observations on the ratchetting of different materials Establishes cyclic plasticity constitutive models for different materials. Analysis of cyclic plasticity in engineering structures. This book is an important reference for students, practicing engineers and researchers who study cyclic plasticity in the areas of mechanical, civil, nuclear, and aerospace engineering as well as materials science.

Introduction to Texture Analysis

Introduction to Texture Analysis PDF Author: Olaf Engler
Publisher: CRC Press
ISBN: 1420063669
Category : Science
Languages : en
Pages : 490

Get Book Here

Book Description
The first edition of Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping broke new ground by collating seventy years worth of research in a convenient single-source format. Reflecting emerging methods and the evolution of the field, the second edition continues to provide comprehensive coverage of the concepts, pra

Material Forming

Material Forming PDF Author: Lukasz Madej
Publisher: Materials Research Forum LLC
ISBN: 1644902478
Category : Technology & Engineering
Languages : en
Pages : 2163

Get Book Here

Book Description
These proceedings present papers on Additive Manufacturing, Composites Forming Processes, Extrusion and Drawing, Forging and Rolling, Formability of Metallic Materials, Friction and Wear in Metal Forming, Incremental and Sheet Metal Forming, Innovative Joining by Forming Technologies, Lionel Fourment MS on Optimization and Inverse Analysis in Forming, Machining and Cutting, Material Behavior Modelling, New and Advanced Numerical Strategies for Material Forming, Non-Conventional Processes, Polymer Processing and Thermomechanical Properties, Sustainability on Material Forming, and Property-Controlled Forming.

Dislocation Mechanics of Metal Plasticity and Fracturing

Dislocation Mechanics of Metal Plasticity and Fracturing PDF Author: Ronald W. Armstrong
Publisher: MDPI
ISBN: 3039432648
Category : Science
Languages : en
Pages : 188

Get Book Here

Book Description
The modern understanding of metal plasticity and fracturing began about 100 years ago, with pioneering work; first, on crack-induced fracturing by Griffith and, second, with the invention of dislocation-enhanced crystal plasticity by Taylor, Orowan and Polanyi. The modern counterparts are fracture mechanics, as invented by Irwin, and dislocation mechanics, as initiated in pioneering work by Cottrell. No less important was the breakthrough development of optical characterization of sectioned polycrystalline metal microstructures started by Sorby in the late 19th century and leading eventually to modern optical, x-ray and electron microscopy methods for assessments of crystal fracture surfaces, via fractography, and particularly of x-ray and electron microscopy techniques applied to quantitative characterizations of internal dislocation behaviors. A major current effort is to match computational simulations of metal deformation/fracturing behaviors with experimental measurements made over extended ranges of microstructures and over varying external conditions of stress-state, temperature and loading rate. The relation of such simulations to the development of constitutive equations for a hoped-for predictive description of material deformation/fracturing behaviors is an active topic of research. The present collection of articles provides a broad sampling of research accomplishments on the two subjects.

NUMISHEET 2022

NUMISHEET 2022 PDF Author: Kaan Inal
Publisher: Springer Nature
ISBN: 3031062124
Category : Technology & Engineering
Languages : en
Pages : 941

Get Book Here

Book Description
The NUMISHEET conference series is the most significant international conference on the area of the numerical simulation of sheet metal forming processes. It gathers the most prominent experts in numerical methods in sheet forming processes and is an outstanding forum for the exchange of ideas and for the discussion of technologies related to sheet metal forming processes. Topics covered in this volume include but are not limited to the following: Materials Modeling and Experimental Testing Methods Friction and Contact Formability, Necking, and Fracture Instabilities and Surface Defects Fracture and Damage Numerical Methods Springback Incremental Sheet Forming Roll Forming Innovative Forming Methods Product and Process Design and Optimization

Computational Materials Science

Computational Materials Science PDF Author: Dierk Raabe
Publisher: Wiley-VCH
ISBN:
Category : Computers
Languages : en
Pages : 408

Get Book Here

Book Description
Modeling and simulation play an ever increasing role in the development and optimization of materials. Computational Materials Science presents the most important approaches in this new interdisciplinary field of materials science and engineering. The reader will learn to assess which numerical method is appropriate for performing simulations at the various microstructural levels and how they can be coupled. This book addresses graduate students and professionals in materials science and engineering as well as materials-oriented physicists and mechanical engineers.

Computational Materials Engineering

Computational Materials Engineering PDF Author: Koenraad George Frans Janssens
Publisher: Academic Press
ISBN: 0080555497
Category : Technology & Engineering
Languages : en
Pages : 359

Get Book Here

Book Description
Computational Materials Engineering is an advanced introduction to the computer-aided modeling of essential material properties and behavior, including the physical, thermal and chemical parameters, as well as the mathematical tools used to perform simulations. Its emphasis will be on crystalline materials, which includes all metals. The basis of Computational Materials Engineering allows scientists and engineers to create virtual simulations of material behavior and properties, to better understand how a particular material works and performs and then use that knowledge to design improvements for particular material applications. The text displays knowledge of software designers, materials scientists and engineers, and those involved in materials applications like mechanical engineers, civil engineers, electrical engineers, and chemical engineers. Readers from students to practicing engineers to materials research scientists will find in this book a single source of the major elements that make up contemporary computer modeling of materials characteristics and behavior. The reader will gain an understanding of the underlying statistical and analytical tools that are the basis for modeling complex material interactions, including an understanding of computational thermodynamics and molecular kinetics; as well as various modeling systems. Finally, the book will offer the reader a variety of algorithms to use in solving typical modeling problems so that the theory presented herein can be put to real-world use. Balanced coverage of fundamentals of materials modeling, as well as more advanced aspects of modeling, such as modeling at all scales from the atomic to the molecular to the macro-material Concise, yet rigorous mathematical coverage of such analytical tools as the Potts type Monte Carlo method, cellular automata, phase field, dislocation dynamics and Finite Element Analysis in statistical and analytical modeling