Author: Prabhat
Publisher: CRC Press
ISBN: 1466582340
Category : Computers
Languages : en
Pages : 440
Book Description
Gain Critical Insight into the Parallel I/O Ecosystem Parallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem. The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O hardware, middleware, and applications. The book then traverses up the I/O software stack. The second part covers the file system layer and the third part discusses middleware (such as MPIIO and PLFS) and user-facing libraries (such as Parallel-NetCDF, HDF5, ADIOS, and GLEAN). Delving into real-world scientific applications that use the parallel I/O infrastructure, the fourth part presents case studies from particle-in-cell, stochastic, finite volume, and direct numerical simulations. The fifth part gives an overview of various profiling and benchmarking tools used by practitioners. The final part of the book addresses the implications of current trends in HPC on parallel I/O in the exascale world.
High Performance Parallel I/O
Author: Prabhat
Publisher: CRC Press
ISBN: 1466582340
Category : Computers
Languages : en
Pages : 440
Book Description
Gain Critical Insight into the Parallel I/O Ecosystem Parallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem. The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O hardware, middleware, and applications. The book then traverses up the I/O software stack. The second part covers the file system layer and the third part discusses middleware (such as MPIIO and PLFS) and user-facing libraries (such as Parallel-NetCDF, HDF5, ADIOS, and GLEAN). Delving into real-world scientific applications that use the parallel I/O infrastructure, the fourth part presents case studies from particle-in-cell, stochastic, finite volume, and direct numerical simulations. The fifth part gives an overview of various profiling and benchmarking tools used by practitioners. The final part of the book addresses the implications of current trends in HPC on parallel I/O in the exascale world.
Publisher: CRC Press
ISBN: 1466582340
Category : Computers
Languages : en
Pages : 440
Book Description
Gain Critical Insight into the Parallel I/O Ecosystem Parallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem. The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O hardware, middleware, and applications. The book then traverses up the I/O software stack. The second part covers the file system layer and the third part discusses middleware (such as MPIIO and PLFS) and user-facing libraries (such as Parallel-NetCDF, HDF5, ADIOS, and GLEAN). Delving into real-world scientific applications that use the parallel I/O infrastructure, the fourth part presents case studies from particle-in-cell, stochastic, finite volume, and direct numerical simulations. The fifth part gives an overview of various profiling and benchmarking tools used by practitioners. The final part of the book addresses the implications of current trends in HPC on parallel I/O in the exascale world.
Parallel I/O for High Performance Computing
Author: John M. May
Publisher: Morgan Kaufmann
ISBN: 9781558606647
Category : Computers
Languages : en
Pages : 392
Book Description
"I enjoyed reading this book immensely. The author was uncommonly careful in his explanations. I'd recommend this book to anyone writing scientific application codes." -Peter S. Pacheco, University of San Francisco "This text provides a useful overview of an area that is currently not addressed in any book. The presentation of parallel I/O issues across all levels of abstraction is this book's greatest strength." -Alan Sussman, University of Maryland Scientific and technical programmers can no longer afford to treat I/O as an afterthought. The speed, memory size, and disk capacity of parallel computers continue to grow rapidly, but the rate at which disk drives can read and write data is improving far less quickly. As a result, the performance of carefully tuned parallel programs can slow dramatically when they read or write files-and the problem is likely to get far worse. Parallel input and output techniques can help solve this problem by creating multiple data paths between memory and disks. However, simply adding disk drives to an I/O system without considering the overall software design will not significantly improve performance. To reap the full benefits of a parallel I/O system, application programmers must understand how parallel I/O systems work and where the performance pitfalls lie. Parallel I/O for High Performance Computing directly addresses this critical need by examining parallel I/O from the bottom up. This important new book is recommended to anyone writing scientific application codes as the best single source on I/O techniques and to computer scientists as a solid up-to-date introduction to parallel I/O research. Features: An overview of key I/O issues at all levels of abstraction-including hardware, through the OS and file systems, up to very high-level scientific libraries. Describes the important features of MPI-IO, netCDF, and HDF-5 and presents numerous examples illustrating how to use each of these I/O interfaces. Addresses the basic question of how to read and write data efficiently in HPC applications. An explanation of various layers of storage - and techniques for using disks (and sometimes tapes) effectively in HPC applications.
Publisher: Morgan Kaufmann
ISBN: 9781558606647
Category : Computers
Languages : en
Pages : 392
Book Description
"I enjoyed reading this book immensely. The author was uncommonly careful in his explanations. I'd recommend this book to anyone writing scientific application codes." -Peter S. Pacheco, University of San Francisco "This text provides a useful overview of an area that is currently not addressed in any book. The presentation of parallel I/O issues across all levels of abstraction is this book's greatest strength." -Alan Sussman, University of Maryland Scientific and technical programmers can no longer afford to treat I/O as an afterthought. The speed, memory size, and disk capacity of parallel computers continue to grow rapidly, but the rate at which disk drives can read and write data is improving far less quickly. As a result, the performance of carefully tuned parallel programs can slow dramatically when they read or write files-and the problem is likely to get far worse. Parallel input and output techniques can help solve this problem by creating multiple data paths between memory and disks. However, simply adding disk drives to an I/O system without considering the overall software design will not significantly improve performance. To reap the full benefits of a parallel I/O system, application programmers must understand how parallel I/O systems work and where the performance pitfalls lie. Parallel I/O for High Performance Computing directly addresses this critical need by examining parallel I/O from the bottom up. This important new book is recommended to anyone writing scientific application codes as the best single source on I/O techniques and to computer scientists as a solid up-to-date introduction to parallel I/O research. Features: An overview of key I/O issues at all levels of abstraction-including hardware, through the OS and file systems, up to very high-level scientific libraries. Describes the important features of MPI-IO, netCDF, and HDF-5 and presents numerous examples illustrating how to use each of these I/O interfaces. Addresses the basic question of how to read and write data efficiently in HPC applications. An explanation of various layers of storage - and techniques for using disks (and sometimes tapes) effectively in HPC applications.
High Performance Mass Storage and Parallel I/O
Author: Hai Jin
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 696
Book Description
Due to the growth of Internet-driven applications, issues such as storage capacity and access speed have become critical in the design of today's computer systems Book fills the need for a readily-accessible single reference source on the subject of high-performance, large scale storage and delivery systems Contains the latest information and future directions of disk arrays and parallel I/O A Wiley-IEEE Press Publication
Publisher: Wiley-IEEE Press
ISBN:
Category : Computers
Languages : en
Pages : 696
Book Description
Due to the growth of Internet-driven applications, issues such as storage capacity and access speed have become critical in the design of today's computer systems Book fills the need for a readily-accessible single reference source on the subject of high-performance, large scale storage and delivery systems Contains the latest information and future directions of disk arrays and parallel I/O A Wiley-IEEE Press Publication
Parallel and High Performance Computing
Author: Robert Robey
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Introduction to HPC with MPI for Data Science
Author: Frank Nielsen
Publisher: Springer
ISBN: 3319219030
Category : Computers
Languages : en
Pages : 304
Book Description
This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions. Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters. In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework. In the second part, the book focuses on high-performance data analytics. Flat and hierarchical clustering algorithms are introduced for data exploration along with how to program these algorithms on computer clusters, followed by machine learning classification, and an introduction to graph analytics. This part closes with a concise introduction to data core-sets that let big data problems be amenable to tiny data problems. Exercises are included at the end of each chapter in order for students to practice the concepts learned, and a final section contains an overall exam which allows them to evaluate how well they have assimilated the material covered in the book.
Publisher: Springer
ISBN: 3319219030
Category : Computers
Languages : en
Pages : 304
Book Description
This gentle introduction to High Performance Computing (HPC) for Data Science using the Message Passing Interface (MPI) standard has been designed as a first course for undergraduates on parallel programming on distributed memory models, and requires only basic programming notions. Divided into two parts the first part covers high performance computing using C++ with the Message Passing Interface (MPI) standard followed by a second part providing high-performance data analytics on computer clusters. In the first part, the fundamental notions of blocking versus non-blocking point-to-point communications, global communications (like broadcast or scatter) and collaborative computations (reduce), with Amdalh and Gustafson speed-up laws are described before addressing parallel sorting and parallel linear algebra on computer clusters. The common ring, torus and hypercube topologies of clusters are then explained and global communication procedures on these topologies are studied. This first part closes with the MapReduce (MR) model of computation well-suited to processing big data using the MPI framework. In the second part, the book focuses on high-performance data analytics. Flat and hierarchical clustering algorithms are introduced for data exploration along with how to program these algorithms on computer clusters, followed by machine learning classification, and an introduction to graph analytics. This part closes with a concise introduction to data core-sets that let big data problems be amenable to tiny data problems. Exercises are included at the end of each chapter in order for students to practice the concepts learned, and a final section contains an overall exam which allows them to evaluate how well they have assimilated the material covered in the book.
High-Performance Computing
Author: Laurence T. Yang
Publisher: John Wiley & Sons
ISBN: 0471732702
Category : Computers
Languages : en
Pages : 818
Book Description
The state of the art of high-performance computing Prominent researchers from around the world have gathered to present the state-of-the-art techniques and innovations in high-performance computing (HPC), including: * Programming models for parallel computing: graph-oriented programming (GOP), OpenMP, the stages and transformation (SAT) approach, the bulk-synchronous parallel (BSP) model, Message Passing Interface (MPI), and Cilk * Architectural and system support, featuring the code tiling compiler technique, the MigThread application-level migration and checkpointing package, the new prefetching scheme of atomicity, a new "receiver makes right" data conversion method, and lessons learned from applying reconfigurable computing to HPC * Scheduling and resource management issues with heterogeneous systems, bus saturation effects on SMPs, genetic algorithms for distributed computing, and novel task-scheduling algorithms * Clusters and grid computing: design requirements, grid middleware, distributed virtual machines, data grid services and performance-boosting techniques, security issues, and open issues * Peer-to-peer computing (P2P) including the proposed search mechanism of hybrid periodical flooding (HPF) and routing protocols for improved routing performance * Wireless and mobile computing, featuring discussions of implementing the Gateway Location Register (GLR) concept in 3G cellular networks, maximizing network longevity, and comparisons of QoS-aware scatternet scheduling algorithms * High-performance applications including partitioners, running Bag-of-Tasks applications on grids, using low-cost clusters to meet high-demand applications, and advanced convergent architectures and protocols High-Performance Computing: Paradigm and Infrastructure is an invaluable compendium for engineers, IT professionals, and researchers and students of computer science and applied mathematics.
Publisher: John Wiley & Sons
ISBN: 0471732702
Category : Computers
Languages : en
Pages : 818
Book Description
The state of the art of high-performance computing Prominent researchers from around the world have gathered to present the state-of-the-art techniques and innovations in high-performance computing (HPC), including: * Programming models for parallel computing: graph-oriented programming (GOP), OpenMP, the stages and transformation (SAT) approach, the bulk-synchronous parallel (BSP) model, Message Passing Interface (MPI), and Cilk * Architectural and system support, featuring the code tiling compiler technique, the MigThread application-level migration and checkpointing package, the new prefetching scheme of atomicity, a new "receiver makes right" data conversion method, and lessons learned from applying reconfigurable computing to HPC * Scheduling and resource management issues with heterogeneous systems, bus saturation effects on SMPs, genetic algorithms for distributed computing, and novel task-scheduling algorithms * Clusters and grid computing: design requirements, grid middleware, distributed virtual machines, data grid services and performance-boosting techniques, security issues, and open issues * Peer-to-peer computing (P2P) including the proposed search mechanism of hybrid periodical flooding (HPF) and routing protocols for improved routing performance * Wireless and mobile computing, featuring discussions of implementing the Gateway Location Register (GLR) concept in 3G cellular networks, maximizing network longevity, and comparisons of QoS-aware scatternet scheduling algorithms * High-performance applications including partitioners, running Bag-of-Tasks applications on grids, using low-cost clusters to meet high-demand applications, and advanced convergent architectures and protocols High-Performance Computing: Paradigm and Infrastructure is an invaluable compendium for engineers, IT professionals, and researchers and students of computer science and applied mathematics.
Parallel and Concurrent Programming in Haskell
Author: Simon Marlow
Publisher: "O'Reilly Media, Inc."
ISBN: 1449335926
Category : Computers
Languages : en
Pages : 322
Book Description
If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network
Publisher: "O'Reilly Media, Inc."
ISBN: 1449335926
Category : Computers
Languages : en
Pages : 322
Book Description
If you have a working knowledge of Haskell, this hands-on book shows you how to use the language’s many APIs and frameworks for writing both parallel and concurrent programs. You’ll learn how parallelism exploits multicore processors to speed up computation-heavy programs, and how concurrency enables you to write programs with threads for multiple interactions. Author Simon Marlow walks you through the process with lots of code examples that you can run, experiment with, and extend. Divided into separate sections on Parallel and Concurrent Haskell, this book also includes exercises to help you become familiar with the concepts presented: Express parallelism in Haskell with the Eval monad and Evaluation Strategies Parallelize ordinary Haskell code with the Par monad Build parallel array-based computations, using the Repa library Use the Accelerate library to run computations directly on the GPU Work with basic interfaces for writing concurrent code Build trees of threads for larger and more complex programs Learn how to build high-speed concurrent network servers Write distributed programs that run on multiple machines in a network
Parallel and High Performance Computing
Author: Robert Robey
Publisher: Simon and Schuster
ISBN: 1617296465
Category : Computers
Languages : en
Pages : 702
Book Description
Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours--or even days--of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. about the technology Modern computing hardware comes equipped with multicore CPUs and GPUs that can process numerous instruction sets simultaneously. Parallel computing takes advantage of this now-standard computer architecture to execute multiple operations at the same time, offering the potential for applications that run faster, are more energy efficient, and can be scaled to tackle problems that demand large computational capabilities. But to get these benefits, you must change the way you design and write software. Taking advantage of the tools, algorithms, and design patterns created specifically for parallel processing is essential to creating top performing applications. about the book Parallel and High Performance Computing is an irreplaceable guide for anyone who needs to maximize application performance and reduce execution time. Parallel computing experts Robert Robey and Yuliana Zamora take a fundamental approach to parallel programming, providing novice practitioners the skills needed to tackle any high-performance computing project with modern CPU and GPU hardware. Get under the hood of parallel computing architecture and learn to evaluate hardware performance, scale up your resources to tackle larger problem sizes, and deliver a level of energy efficiency that makes high performance possible on hand-held devices. When you''re done, you''ll be able to build parallel programs that are reliable, robust, and require minimal code maintenance. This book is unique in its breadth, with discussions of parallel algorithms, techniques to successfully develop parallel programs, and wide coverage of the most effective languages for the CPU and GPU. The programming paradigms include MPI, OpenMP threading, and vectorization for the CPU. For the GPU, the book covers OpenMP and OpenACC directive-based approaches and the native-based CUDA and OpenCL languages. what''s inside Steps for planning a new parallel project Choosing the right data structures and algorithms Addressing underperforming kernels and loops The differences in CPU and GPU architecture about the reader For experienced programmers with proficiency in a high performance computing language such as C, C++, or Fortran. about the authors Robert Robey has been active in the field of parallel computing for over 30 years. He works at Los Alamos National Laboratory, and has previously worked at the University of New Mexico, where he started up the Albuquerque High Performance Computing Center. Yuliana Zamora has lectured on efficient programming of modern hardware at national conferences, based on her work developing applications running on tens of thousands of processing cores and the latest GPU architectures.
Publisher: Simon and Schuster
ISBN: 1617296465
Category : Computers
Languages : en
Pages : 702
Book Description
Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours--or even days--of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. about the technology Modern computing hardware comes equipped with multicore CPUs and GPUs that can process numerous instruction sets simultaneously. Parallel computing takes advantage of this now-standard computer architecture to execute multiple operations at the same time, offering the potential for applications that run faster, are more energy efficient, and can be scaled to tackle problems that demand large computational capabilities. But to get these benefits, you must change the way you design and write software. Taking advantage of the tools, algorithms, and design patterns created specifically for parallel processing is essential to creating top performing applications. about the book Parallel and High Performance Computing is an irreplaceable guide for anyone who needs to maximize application performance and reduce execution time. Parallel computing experts Robert Robey and Yuliana Zamora take a fundamental approach to parallel programming, providing novice practitioners the skills needed to tackle any high-performance computing project with modern CPU and GPU hardware. Get under the hood of parallel computing architecture and learn to evaluate hardware performance, scale up your resources to tackle larger problem sizes, and deliver a level of energy efficiency that makes high performance possible on hand-held devices. When you''re done, you''ll be able to build parallel programs that are reliable, robust, and require minimal code maintenance. This book is unique in its breadth, with discussions of parallel algorithms, techniques to successfully develop parallel programs, and wide coverage of the most effective languages for the CPU and GPU. The programming paradigms include MPI, OpenMP threading, and vectorization for the CPU. For the GPU, the book covers OpenMP and OpenACC directive-based approaches and the native-based CUDA and OpenCL languages. what''s inside Steps for planning a new parallel project Choosing the right data structures and algorithms Addressing underperforming kernels and loops The differences in CPU and GPU architecture about the reader For experienced programmers with proficiency in a high performance computing language such as C, C++, or Fortran. about the authors Robert Robey has been active in the field of parallel computing for over 30 years. He works at Los Alamos National Laboratory, and has previously worked at the University of New Mexico, where he started up the Albuquerque High Performance Computing Center. Yuliana Zamora has lectured on efficient programming of modern hardware at national conferences, based on her work developing applications running on tens of thousands of processing cores and the latest GPU architectures.
IPython Interactive Computing and Visualization Cookbook
Author: Cyrille Rossant
Publisher: Packt Publishing Ltd
ISBN: 178328482X
Category : Computers
Languages : en
Pages : 899
Book Description
Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Publisher: Packt Publishing Ltd
ISBN: 178328482X
Category : Computers
Languages : en
Pages : 899
Book Description
Intended to anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, hobbyists... Basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.
Input/Output in Parallel and Distributed Computer Systems
Author: Ravi Jain
Publisher:
ISBN: 9781461314028
Category :
Languages : en
Pages : 416
Book Description
Input/Output in Parallel and Distributed Computer Systems has attracted increasing attention over the last few years, as it has become apparent that input/output performance, rather than CPU performance, may be the key limiting factor in the performance of future systems. This I/O bottleneck is caused by the increasing speed mismatch between processing units and storage devices, the use of multiple processors operating simultaneously in parallel and distributed systems, and by the increasing I/O demands of new classes of applications, like multimedia. It is also important to note that, to varying degrees, the I/O bottleneck exists at multiple levels of the memory hierarchy. All indications are that the I/O bottleneck will be with us for some time to come, and is likely to increase in importance. Input/Output in Parallel and Distributed Computer Systems is based on papers presented at the 1994 and 1995 IOPADS workshops held in conjunction with the International Parallel Processing Symposium. This book is divided into three parts. Part I, the Introduction, contains four invited chapters which provide a tutorial survey of I/O issues in parallel and distributed systems. The chapters in Parts II and III contain selected research papers from the 1994 and 1995 IOPADS workshops; many of these papers have been substantially revised and updated for inclusion in this volume. Part II collects the papers from both years which deal with various aspects of system software, and Part III addresses architectural issues. Input/Output in Parallel and Distributed Computer Systems is suitable as a secondary text for graduate level courses in computer architecture, software engineering, and multimedia systems, and as a reference for researchers and practitioners in industry.
Publisher:
ISBN: 9781461314028
Category :
Languages : en
Pages : 416
Book Description
Input/Output in Parallel and Distributed Computer Systems has attracted increasing attention over the last few years, as it has become apparent that input/output performance, rather than CPU performance, may be the key limiting factor in the performance of future systems. This I/O bottleneck is caused by the increasing speed mismatch between processing units and storage devices, the use of multiple processors operating simultaneously in parallel and distributed systems, and by the increasing I/O demands of new classes of applications, like multimedia. It is also important to note that, to varying degrees, the I/O bottleneck exists at multiple levels of the memory hierarchy. All indications are that the I/O bottleneck will be with us for some time to come, and is likely to increase in importance. Input/Output in Parallel and Distributed Computer Systems is based on papers presented at the 1994 and 1995 IOPADS workshops held in conjunction with the International Parallel Processing Symposium. This book is divided into three parts. Part I, the Introduction, contains four invited chapters which provide a tutorial survey of I/O issues in parallel and distributed systems. The chapters in Parts II and III contain selected research papers from the 1994 and 1995 IOPADS workshops; many of these papers have been substantially revised and updated for inclusion in this volume. Part II collects the papers from both years which deal with various aspects of system software, and Part III addresses architectural issues. Input/Output in Parallel and Distributed Computer Systems is suitable as a secondary text for graduate level courses in computer architecture, software engineering, and multimedia systems, and as a reference for researchers and practitioners in industry.