Guide to High Performance Distributed Computing

Guide to High Performance Distributed Computing PDF Author: K.G. Srinivasa
Publisher: Springer
ISBN: 3319134973
Category : Computers
Languages : en
Pages : 310

Get Book Here

Book Description
This timely text/reference describes the development and implementation of large-scale distributed processing systems using open source tools and technologies. Comprehensive in scope, the book presents state-of-the-art material on building high performance distributed computing systems, providing practical guidance and best practices as well as describing theoretical software frameworks. Features: describes the fundamentals of building scalable software systems for large-scale data processing in the new paradigm of high performance distributed computing; presents an overview of the Hadoop ecosystem, followed by step-by-step instruction on its installation, programming and execution; Reviews the basics of Spark, including resilient distributed datasets, and examines Hadoop streaming and working with Scalding; Provides detailed case studies on approaches to clustering, data classification and regression analysis; Explains the process of creating a working recommender system using Scalding and Spark.

Guide to High Performance Distributed Computing

Guide to High Performance Distributed Computing PDF Author: K.G. Srinivasa
Publisher: Springer
ISBN: 3319134973
Category : Computers
Languages : en
Pages : 310

Get Book Here

Book Description
This timely text/reference describes the development and implementation of large-scale distributed processing systems using open source tools and technologies. Comprehensive in scope, the book presents state-of-the-art material on building high performance distributed computing systems, providing practical guidance and best practices as well as describing theoretical software frameworks. Features: describes the fundamentals of building scalable software systems for large-scale data processing in the new paradigm of high performance distributed computing; presents an overview of the Hadoop ecosystem, followed by step-by-step instruction on its installation, programming and execution; Reviews the basics of Spark, including resilient distributed datasets, and examines Hadoop streaming and working with Scalding; Provides detailed case studies on approaches to clustering, data classification and regression analysis; Explains the process of creating a working recommender system using Scalding and Spark.

Modern Compiler Design

Modern Compiler Design PDF Author: Dick Grune
Publisher: Springer Science & Business Media
ISBN: 1461446996
Category : Computers
Languages : en
Pages : 832

Get Book Here

Book Description
"Modern Compiler Design" makes the topic of compiler design more accessible by focusing on principles and techniques of wide application. By carefully distinguishing between the essential (material that has a high chance of being useful) and the incidental (material that will be of benefit only in exceptional cases) much useful information was packed in this comprehensive volume. The student who has finished this book can expect to understand the workings of and add to a language processor for each of the modern paradigms, and be able to read the literature on how to proceed. The first provides a firm basis, the second potential for growth.

High-Performance Big Data Computing

High-Performance Big Data Computing PDF Author: Dhabaleswar K. Panda
Publisher: MIT Press
ISBN: 0262369427
Category : Computers
Languages : en
Pages : 275

Get Book Here

Book Description
An in-depth overview of an emerging field that brings together high-performance computing, big data processing, and deep lLearning. Over the last decade, the exponential explosion of data known as big data has changed the way we understand and harness the power of data. The emerging field of high-performance big data computing, which brings together high-performance computing (HPC), big data processing, and deep learning, aims to meet the challenges posed by large-scale data processing. This book offers an in-depth overview of high-performance big data computing and the associated technical issues, approaches, and solutions. The book covers basic concepts and necessary background knowledge, including data processing frameworks, storage systems, and hardware capabilities; offers a detailed discussion of technical issues in accelerating big data computing in terms of computation, communication, memory and storage, codesign, workload characterization and benchmarking, and system deployment and management; and surveys benchmarks and workloads for evaluating big data middleware systems. It presents a detailed discussion of big data computing systems and applications with high-performance networking, computing, and storage technologies, including state-of-the-art designs for data processing and storage systems. Finally, the book considers some advanced research topics in high-performance big data computing, including designing high-performance deep learning over big data (DLoBD) stacks and HPC cloud technologies.

High Performance Heterogeneous Computing

High Performance Heterogeneous Computing PDF Author: Jack Dongarra
Publisher: John Wiley & Sons
ISBN: 0470508191
Category : Computers
Languages : en
Pages : 284

Get Book Here

Book Description
An analytical overview of the state of the art, open problems, and future trends in heterogeneous parallel and distributed computing This book provides an overview of the ongoing academic research, development, and uses of heterogeneous parallel and distributed computing in the context of scientific computing. Presenting the state of the art in this challenging and rapidly evolving area, the book is organized in five distinct parts: Heterogeneous Platforms: Taxonomy, Typical Uses, and Programming Issues Performance Models of Heterogeneous Platforms and Design of Heterogeneous Algorithms Performance: Implementation and Software Applications Future Tre High Performance Heterogeneous Computing is a valuable¿reference for researchers and practitioners in the area of high performance heterogeneous computing. It also serves as an excellent supplemental text for graduate and postgraduate courses in related areas.

Introduction to High Performance Computing for Scientists and Engineers

Introduction to High Performance Computing for Scientists and Engineers PDF Author: Georg Hager
Publisher: CRC Press
ISBN: 1439811938
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author

Parallel and High Performance Computing

Parallel and High Performance Computing PDF Author: Robert Robey
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702

Get Book Here

Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code

High Performance Parallel Computing

High Performance Parallel Computing PDF Author: Satyadhyan Chickerur
Publisher: BoD – Books on Demand
ISBN: 178985623X
Category : Computers
Languages : en
Pages : 120

Get Book Here

Book Description
This edited book aims to present the state of the art in research and development of the convergence of high-performance computing and parallel programming for various engineering and scientific applications. The book has consolidated algorithms, techniques, and methodologies to bridge the gap between the theoretical foundations of academia and implementation for research, which might be used in business and other real-time applications in the future.The book outlines techniques and tools used for emergent areas and domains, which include acceleration of large-scale electronic structure simulations with heterogeneous parallel computing, characterizing power and energy efficiency of a data-centric high-performance computing runtime and applications, security applications of GPUs, parallel implementation of multiprocessors on MPI using FDTD, particle-based fused rendering, design and implementation of particle systems for mesh-free methods with high performance, and evolving topics on heterogeneous computing. In the coming days the need to converge HPC, IoT, cloud-based applications will be felt and this volume tries to bridge that gap.

TORUS 1 - Toward an Open Resource Using Services

TORUS 1 - Toward an Open Resource Using Services PDF Author: Dominique Laffly
Publisher: John Wiley & Sons
ISBN: 1119720486
Category : Computers
Languages : en
Pages : 299

Get Book Here

Book Description
This book, presented in three volumes, examines environmental disciplines in relation to major players in contemporary science: Big Data, artificial intelligence and cloud computing. Today, there is a real sense of urgency regarding the evolution of computer technology, the ever-increasing volume of data, threats to our climate and the sustainable development of our planet. As such, we need to reduce technology just as much as we need to bridge the global socio-economic gap between the North and South; between universal free access to data (open data) and free software (open source). In this book, we pay particular attention to certain environmental subjects, in order to enrich our understanding of cloud computing. These subjects are: erosion; urban air pollution and atmospheric pollution in Southeast Asia; melting permafrost (causing the accelerated release of soil organic carbon in the atmosphere); alert systems of environmental hazards (such as forest fires, prospective modeling of socio-spatial practices and land use); and web fountains of geographical data. Finally, this book asks the question: in order to find a pattern in the data, how do we move from a traditional computing model-based world to pure mathematical research? After thorough examination of this topic, we conclude that this goal is both transdisciplinary and achievable.

High Performance Cluster Computing

High Performance Cluster Computing PDF Author: Rajkumar Buyya
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 904

Get Book Here

Book Description
An authoritative guide to today's revolution in "commodity supercomputing, " this book brings together more than 100 of the field's leading practitioners, providing a single source for up-to-the-minute information on virtually every key system issue associated with high-performance cluster computing.

High-Performance Computing

High-Performance Computing PDF Author: Laurence T. Yang
Publisher: John Wiley & Sons
ISBN: 0471732702
Category : Computers
Languages : en
Pages : 818

Get Book Here

Book Description
The state of the art of high-performance computing Prominent researchers from around the world have gathered to present the state-of-the-art techniques and innovations in high-performance computing (HPC), including: * Programming models for parallel computing: graph-oriented programming (GOP), OpenMP, the stages and transformation (SAT) approach, the bulk-synchronous parallel (BSP) model, Message Passing Interface (MPI), and Cilk * Architectural and system support, featuring the code tiling compiler technique, the MigThread application-level migration and checkpointing package, the new prefetching scheme of atomicity, a new "receiver makes right" data conversion method, and lessons learned from applying reconfigurable computing to HPC * Scheduling and resource management issues with heterogeneous systems, bus saturation effects on SMPs, genetic algorithms for distributed computing, and novel task-scheduling algorithms * Clusters and grid computing: design requirements, grid middleware, distributed virtual machines, data grid services and performance-boosting techniques, security issues, and open issues * Peer-to-peer computing (P2P) including the proposed search mechanism of hybrid periodical flooding (HPF) and routing protocols for improved routing performance * Wireless and mobile computing, featuring discussions of implementing the Gateway Location Register (GLR) concept in 3G cellular networks, maximizing network longevity, and comparisons of QoS-aware scatternet scheduling algorithms * High-performance applications including partitioners, running Bag-of-Tasks applications on grids, using low-cost clusters to meet high-demand applications, and advanced convergent architectures and protocols High-Performance Computing: Paradigm and Infrastructure is an invaluable compendium for engineers, IT professionals, and researchers and students of computer science and applied mathematics.