High Performance Computing in Science and Engineering ’02

High Performance Computing in Science and Engineering ’02 PDF Author: Egon Krause
Publisher: Springer Science & Business Media
ISBN: 3642593542
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description
This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

High Performance Computing in Science and Engineering ’02

High Performance Computing in Science and Engineering ’02 PDF Author: Egon Krause
Publisher: Springer Science & Business Media
ISBN: 3642593542
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description
This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

Introduction to High Performance Computing for Scientists and Engineers

Introduction to High Performance Computing for Scientists and Engineers PDF Author: Georg Hager
Publisher: CRC Press
ISBN: 1439811938
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author

High Performance Computing in Science and Engineering '20

High Performance Computing in Science and Engineering '20 PDF Author: Wolfgang E. Nagel
Publisher: Springer Nature
ISBN: 3030806022
Category : Computers
Languages : en
Pages : 577

Get Book Here

Book Description
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2020. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

High Performance Computing in Science and Engineering, Munich 2004

High Performance Computing in Science and Engineering, Munich 2004 PDF Author: Siegfried Wagner
Publisher: Springer Science & Business Media
ISBN: 3540266577
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
Leading-edge research groups in the field of scientific computing present their outstanding projects using the High Performance Computer in Bavaria (HLRB), Hitachi SR8000-F1, one of the top-level supercomputers for academic research in Germany. The projects address modelling and simulation in the disciplines Biosciences, Chemistry, Chemical Physics, Solid-State Physics, High-Energy Physics, Astrophysics, Geophysics, Computational Fluid Dynamics, and Computer Science. The authors describe their scientific background, their resource requirements with respect to top-level supercomputers, and their methods for efficient utilization of the costly high-performance computing power. Contributions of interdisciplinary research projects that have been supported by the Competence Network for Scientific High Performance Computing in Bavaria (KONWIHR) complete the broad range of supercomputer research and applications covered by this volume.

Introduction to High Performance Scientific Computing

Introduction to High Performance Scientific Computing PDF Author: Victor Eijkhout
Publisher: Lulu.com
ISBN: 1257992546
Category : Computers
Languages : en
Pages : 536

Get Book Here

Book Description
This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.

High Performance Computing

High Performance Computing PDF Author: Thomas Sterling
Publisher: Morgan Kaufmann
ISBN: 032390212X
Category : Computers
Languages : en
Pages : 537

Get Book Here

Book Description
Performance Computing: Modern Systems and Practices is a fully comprehensive and easily accessible treatment of high performance computing, covering fundamental concepts and essential knowledge while also providing key skills training. With this book, students will begin their careers with an understanding of possible directions for future research and development in HPC, domain scientists will learn how to use supercomputers as a key tool in their quest for new knowledge, and practicing engineers will discover how supercomputers can employ HPC systems and methods to the design and simulation of innovative products. This new edition has been fully updated, and has been reorganized and restructured to improve accessibility for undergraduate students while also adding trending content such as machine learning and a new chapter on CUDA. - Covers enabling technologies, system architectures and operating systems, parallel programming languages and algorithms, scientific visualization, correctness and performance debugging tools and methods, GPU accelerators, and big data problems - Provides numerous examples that explore the basics of supercomputing while also providing practical training in the real use of high-end computers - Helps users with informative and practical examples that build knowledge and skills through incremental steps - Features sidebars of background and context to present a live history and culture of this unique field

Software Engineering for Science

Software Engineering for Science PDF Author: Jeffrey C. Carver
Publisher: CRC Press
ISBN: 1498743862
Category : Computers
Languages : en
Pages : 311

Get Book Here

Book Description
Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.

High-Performance Computing Using FPGAs

High-Performance Computing Using FPGAs PDF Author: Wim Vanderbauwhede
Publisher: Springer Science & Business Media
ISBN: 1461417910
Category : Technology & Engineering
Languages : en
Pages : 798

Get Book Here

Book Description
High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC’s Novo-G and EPCC’s Maxwell systems; tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer; reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL’s CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C++); Graphical tools (MATLAB-Simulink, NI LabVIEW); Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft’s Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology; Financial Computing; Stencil computations; Information retrieval; Lattice QCD; Astrophysics simulations; Weather and climate modeling.

High Performance Computing in Clouds

High Performance Computing in Clouds PDF Author: Edson Borin
Publisher: Springer Nature
ISBN: 3031297695
Category : Computers
Languages : en
Pages : 337

Get Book Here

Book Description
This book brings a thorough explanation on the path needed to use cloud computing technologies to run High-Performance Computing (HPC) applications. Besides presenting the motivation behind moving HPC applications to the cloud, it covers both essential and advanced issues on this topic such as deploying HPC applications and infrastructures, designing cloud-friendly HPC applications, and optimizing a provisioned cloud infrastructure to run this family of applications. Additionally, this book also describes the best practices to maintain and keep running HPC applications in the cloud by employing fault tolerance techniques and avoiding resource wastage. To give practical meaning to topics covered in this book, it brings some case studies where HPC applications, used in relevant scientific areas like Bioinformatics and Oil and Gas industry were moved to the cloud. Moreover, it also discusses how to train deep learning models in the cloud elucidating the key components and aspects necessary to train these models via different types of services offered by cloud providers. Despite the vast bibliography about cloud computing and HPC, to the best of our knowledge, no existing manuscript has comprehensively covered these topics and discussed the steps, methods and strategies to execute HPC applications in clouds. Therefore, we believe this title is useful for IT professionals and students and researchers interested in cutting-edge technologies, concepts, and insights focusing on the use of cloud technologies to run HPC applications.

Introduction to High Performance Scientific Computing

Introduction to High Performance Scientific Computing PDF Author: David L. Chopp
Publisher: SIAM
ISBN: 1611975638
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
Based on a course developed by the author, Introduction to High Performance Scientific Computing introduces methods for adding parallelism to numerical methods for solving differential equations. It contains exercises and programming projects that facilitate learning as well as examples and discussions based on the C programming language, with additional comments for those already familiar with C++. The text provides an overview of concepts and algorithmic techniques for modern scientific computing and is divided into six self-contained parts that can be assembled in any order to create an introductory course using available computer hardware. Part I introduces the C programming language for those not already familiar with programming in a compiled language. Part II describes parallelism on shared memory architectures using OpenMP. Part III details parallelism on computer clusters using MPI for coordinating a computation. Part IV demonstrates the use of graphical programming units (GPUs) to solve problems using the CUDA language for NVIDIA graphics cards. Part V addresses programming on GPUs for non-NVIDIA graphics cards using the OpenCL framework. Finally, Part VI contains a brief discussion of numerical methods and applications, giving the reader an opportunity to test the methods on typical computing problems.