Author: Thomas Sterling
Publisher: Morgan Kaufmann
ISBN: 032390212X
Category : Computers
Languages : en
Pages : 537
Book Description
Performance Computing: Modern Systems and Practices is a fully comprehensive and easily accessible treatment of high performance computing, covering fundamental concepts and essential knowledge while also providing key skills training. With this book, students will begin their careers with an understanding of possible directions for future research and development in HPC, domain scientists will learn how to use supercomputers as a key tool in their quest for new knowledge, and practicing engineers will discover how supercomputers can employ HPC systems and methods to the design and simulation of innovative products. This new edition has been fully updated, and has been reorganized and restructured to improve accessibility for undergraduate students while also adding trending content such as machine learning and a new chapter on CUDA. - Covers enabling technologies, system architectures and operating systems, parallel programming languages and algorithms, scientific visualization, correctness and performance debugging tools and methods, GPU accelerators, and big data problems - Provides numerous examples that explore the basics of supercomputing while also providing practical training in the real use of high-end computers - Helps users with informative and practical examples that build knowledge and skills through incremental steps - Features sidebars of background and context to present a live history and culture of this unique field
High Performance Computing
Author: Thomas Sterling
Publisher: Morgan Kaufmann
ISBN: 032390212X
Category : Computers
Languages : en
Pages : 537
Book Description
Performance Computing: Modern Systems and Practices is a fully comprehensive and easily accessible treatment of high performance computing, covering fundamental concepts and essential knowledge while also providing key skills training. With this book, students will begin their careers with an understanding of possible directions for future research and development in HPC, domain scientists will learn how to use supercomputers as a key tool in their quest for new knowledge, and practicing engineers will discover how supercomputers can employ HPC systems and methods to the design and simulation of innovative products. This new edition has been fully updated, and has been reorganized and restructured to improve accessibility for undergraduate students while also adding trending content such as machine learning and a new chapter on CUDA. - Covers enabling technologies, system architectures and operating systems, parallel programming languages and algorithms, scientific visualization, correctness and performance debugging tools and methods, GPU accelerators, and big data problems - Provides numerous examples that explore the basics of supercomputing while also providing practical training in the real use of high-end computers - Helps users with informative and practical examples that build knowledge and skills through incremental steps - Features sidebars of background and context to present a live history and culture of this unique field
Publisher: Morgan Kaufmann
ISBN: 032390212X
Category : Computers
Languages : en
Pages : 537
Book Description
Performance Computing: Modern Systems and Practices is a fully comprehensive and easily accessible treatment of high performance computing, covering fundamental concepts and essential knowledge while also providing key skills training. With this book, students will begin their careers with an understanding of possible directions for future research and development in HPC, domain scientists will learn how to use supercomputers as a key tool in their quest for new knowledge, and practicing engineers will discover how supercomputers can employ HPC systems and methods to the design and simulation of innovative products. This new edition has been fully updated, and has been reorganized and restructured to improve accessibility for undergraduate students while also adding trending content such as machine learning and a new chapter on CUDA. - Covers enabling technologies, system architectures and operating systems, parallel programming languages and algorithms, scientific visualization, correctness and performance debugging tools and methods, GPU accelerators, and big data problems - Provides numerous examples that explore the basics of supercomputing while also providing practical training in the real use of high-end computers - Helps users with informative and practical examples that build knowledge and skills through incremental steps - Features sidebars of background and context to present a live history and culture of this unique field
Introduction to High Performance Scientific Computing
Author: Victor Eijkhout
Publisher: Lulu.com
ISBN: 1257992546
Category : Computers
Languages : en
Pages : 536
Book Description
This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.
Publisher: Lulu.com
ISBN: 1257992546
Category : Computers
Languages : en
Pages : 536
Book Description
This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.
Introduction to High Performance Computing for Scientists and Engineers
Author: Georg Hager
Publisher: CRC Press
ISBN: 1439811938
Category : Computers
Languages : en
Pages : 350
Book Description
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author
Publisher: CRC Press
ISBN: 1439811938
Category : Computers
Languages : en
Pages : 350
Book Description
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author
High Performance Computing
Author: John Levesque
Publisher: CRC Press
ISBN: 1420077066
Category : Computers
Languages : en
Pages : 242
Book Description
High Performance Computing: Programming and Applications presents techniques that address new performance issues in the programming of high performance computing (HPC) applications. Omitting tedious details, the book discusses hardware architecture concepts and programming techniques that are the most pertinent to application developers for achievi
Publisher: CRC Press
ISBN: 1420077066
Category : Computers
Languages : en
Pages : 242
Book Description
High Performance Computing: Programming and Applications presents techniques that address new performance issues in the programming of high performance computing (HPC) applications. Omitting tedious details, the book discusses hardware architecture concepts and programming techniques that are the most pertinent to application developers for achievi
Introduction to High Performance Scientific Computing
Author: David L. Chopp
Publisher: SIAM
ISBN: 1611975646
Category : Mathematics
Languages : en
Pages : 470
Book Description
Based on a course developed by the author, Introduction to High Performance Scientific Computing introduces methods for adding parallelism to numerical methods for solving differential equations. It contains exercises and programming projects that facilitate learning as well as examples and discussions based on the C programming language, with additional comments for those already familiar with C++. The text provides an overview of concepts and algorithmic techniques for modern scientific computing and is divided into six self-contained parts that can be assembled in any order to create an introductory course using available computer hardware. Part I introduces the C programming language for those not already familiar with programming in a compiled language. Part II describes parallelism on shared memory architectures using OpenMP. Part III details parallelism on computer clusters using MPI for coordinating a computation. Part IV demonstrates the use of graphical programming units (GPUs) to solve problems using the CUDA language for NVIDIA graphics cards. Part V addresses programming on GPUs for non-NVIDIA graphics cards using the OpenCL framework. Finally, Part VI contains a brief discussion of numerical methods and applications, giving the reader an opportunity to test the methods on typical computing problems.
Publisher: SIAM
ISBN: 1611975646
Category : Mathematics
Languages : en
Pages : 470
Book Description
Based on a course developed by the author, Introduction to High Performance Scientific Computing introduces methods for adding parallelism to numerical methods for solving differential equations. It contains exercises and programming projects that facilitate learning as well as examples and discussions based on the C programming language, with additional comments for those already familiar with C++. The text provides an overview of concepts and algorithmic techniques for modern scientific computing and is divided into six self-contained parts that can be assembled in any order to create an introductory course using available computer hardware. Part I introduces the C programming language for those not already familiar with programming in a compiled language. Part II describes parallelism on shared memory architectures using OpenMP. Part III details parallelism on computer clusters using MPI for coordinating a computation. Part IV demonstrates the use of graphical programming units (GPUs) to solve problems using the CUDA language for NVIDIA graphics cards. Part V addresses programming on GPUs for non-NVIDIA graphics cards using the OpenCL framework. Finally, Part VI contains a brief discussion of numerical methods and applications, giving the reader an opportunity to test the methods on typical computing problems.
High-Performance Computing in Finance
Author: M. A. H. Dempster
Publisher: CRC Press
ISBN: 1315354691
Category : Computers
Languages : en
Pages : 648
Book Description
High-Performance Computing (HPC) delivers higher computational performance to solve problems in science, engineering and finance. There are various HPC resources available for different needs, ranging from cloud computing– that can be used without much expertise and expense – to more tailored hardware, such as Field-Programmable Gate Arrays (FPGAs) or D-Wave’s quantum computer systems. High-Performance Computing in Finance is the first book that provides a state-of-the-art introduction to HPC for finance, capturing both academically and practically relevant problems.
Publisher: CRC Press
ISBN: 1315354691
Category : Computers
Languages : en
Pages : 648
Book Description
High-Performance Computing (HPC) delivers higher computational performance to solve problems in science, engineering and finance. There are various HPC resources available for different needs, ranging from cloud computing– that can be used without much expertise and expense – to more tailored hardware, such as Field-Programmable Gate Arrays (FPGAs) or D-Wave’s quantum computer systems. High-Performance Computing in Finance is the first book that provides a state-of-the-art introduction to HPC for finance, capturing both academically and practically relevant problems.
High-Performance Big Data Computing
Author: Dhabaleswar K. Panda
Publisher: MIT Press
ISBN: 0262369427
Category : Computers
Languages : en
Pages : 275
Book Description
An in-depth overview of an emerging field that brings together high-performance computing, big data processing, and deep lLearning. Over the last decade, the exponential explosion of data known as big data has changed the way we understand and harness the power of data. The emerging field of high-performance big data computing, which brings together high-performance computing (HPC), big data processing, and deep learning, aims to meet the challenges posed by large-scale data processing. This book offers an in-depth overview of high-performance big data computing and the associated technical issues, approaches, and solutions. The book covers basic concepts and necessary background knowledge, including data processing frameworks, storage systems, and hardware capabilities; offers a detailed discussion of technical issues in accelerating big data computing in terms of computation, communication, memory and storage, codesign, workload characterization and benchmarking, and system deployment and management; and surveys benchmarks and workloads for evaluating big data middleware systems. It presents a detailed discussion of big data computing systems and applications with high-performance networking, computing, and storage technologies, including state-of-the-art designs for data processing and storage systems. Finally, the book considers some advanced research topics in high-performance big data computing, including designing high-performance deep learning over big data (DLoBD) stacks and HPC cloud technologies.
Publisher: MIT Press
ISBN: 0262369427
Category : Computers
Languages : en
Pages : 275
Book Description
An in-depth overview of an emerging field that brings together high-performance computing, big data processing, and deep lLearning. Over the last decade, the exponential explosion of data known as big data has changed the way we understand and harness the power of data. The emerging field of high-performance big data computing, which brings together high-performance computing (HPC), big data processing, and deep learning, aims to meet the challenges posed by large-scale data processing. This book offers an in-depth overview of high-performance big data computing and the associated technical issues, approaches, and solutions. The book covers basic concepts and necessary background knowledge, including data processing frameworks, storage systems, and hardware capabilities; offers a detailed discussion of technical issues in accelerating big data computing in terms of computation, communication, memory and storage, codesign, workload characterization and benchmarking, and system deployment and management; and surveys benchmarks and workloads for evaluating big data middleware systems. It presents a detailed discussion of big data computing systems and applications with high-performance networking, computing, and storage technologies, including state-of-the-art designs for data processing and storage systems. Finally, the book considers some advanced research topics in high-performance big data computing, including designing high-performance deep learning over big data (DLoBD) stacks and HPC cloud technologies.
A Practical Approach to High-Performance Computing
Author: Sergei Kurgalin
Publisher: Springer Nature
ISBN: 3030275582
Category : Computers
Languages : en
Pages : 210
Book Description
The book discusses the fundamentals of high-performance computing. The authors combine visualization, comprehensibility, and strictness in their material presentation, and thus influence the reader towards practical application and learning how to solve real computing problems. They address both key approaches to programming modern computing systems: multithreading-based parallelizing in shared memory systems, and applying message-passing technologies in distributed systems. The book is suitable for undergraduate and graduate students, and for researchers and practitioners engaged with high-performance computing systems. Each chapter begins with a theoretical part, where the relevant terminology is introduced along with the basic theoretical results and methods of parallel programming, and concludes with a list of test questions and problems of varying difficulty. The authors include many solutions and hints, and often sample code.
Publisher: Springer Nature
ISBN: 3030275582
Category : Computers
Languages : en
Pages : 210
Book Description
The book discusses the fundamentals of high-performance computing. The authors combine visualization, comprehensibility, and strictness in their material presentation, and thus influence the reader towards practical application and learning how to solve real computing problems. They address both key approaches to programming modern computing systems: multithreading-based parallelizing in shared memory systems, and applying message-passing technologies in distributed systems. The book is suitable for undergraduate and graduate students, and for researchers and practitioners engaged with high-performance computing systems. Each chapter begins with a theoretical part, where the relevant terminology is introduced along with the basic theoretical results and methods of parallel programming, and concludes with a list of test questions and problems of varying difficulty. The authors include many solutions and hints, and often sample code.
Parallel and High Performance Computing
Author: Robert Robey
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
Publisher: Simon and Schuster
ISBN: 1638350388
Category : Computers
Languages : en
Pages : 702
Book Description
Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code
High Performance Computing
Author: Sergio Nesmachnow
Publisher: Springer Nature
ISBN: 3030680355
Category : Computers
Languages : en
Pages : 229
Book Description
This book constitutes revised selected papers of the 7th Latin American High Performance Computing Conference, CARLA 2020, held in Cuenca, Ecuador, in September 2020. Due to the COVID-19 pandemic the conference was held in a virtual mode. The 15 revised full papers presented were carefully reviewed and selected out of 36 submissions. The papers included in this book are organized according to the topics on High Performance Computing Applications; High Performance Computing and Artificial Intelligence.
Publisher: Springer Nature
ISBN: 3030680355
Category : Computers
Languages : en
Pages : 229
Book Description
This book constitutes revised selected papers of the 7th Latin American High Performance Computing Conference, CARLA 2020, held in Cuenca, Ecuador, in September 2020. Due to the COVID-19 pandemic the conference was held in a virtual mode. The 15 revised full papers presented were carefully reviewed and selected out of 36 submissions. The papers included in this book are organized according to the topics on High Performance Computing Applications; High Performance Computing and Artificial Intelligence.