High-Performance Big Data Computing

High-Performance Big Data Computing PDF Author: Dhabaleswar K. Panda
Publisher: MIT Press
ISBN: 0262369427
Category : Computers
Languages : en
Pages : 275

Get Book Here

Book Description
An in-depth overview of an emerging field that brings together high-performance computing, big data processing, and deep lLearning. Over the last decade, the exponential explosion of data known as big data has changed the way we understand and harness the power of data. The emerging field of high-performance big data computing, which brings together high-performance computing (HPC), big data processing, and deep learning, aims to meet the challenges posed by large-scale data processing. This book offers an in-depth overview of high-performance big data computing and the associated technical issues, approaches, and solutions. The book covers basic concepts and necessary background knowledge, including data processing frameworks, storage systems, and hardware capabilities; offers a detailed discussion of technical issues in accelerating big data computing in terms of computation, communication, memory and storage, codesign, workload characterization and benchmarking, and system deployment and management; and surveys benchmarks and workloads for evaluating big data middleware systems. It presents a detailed discussion of big data computing systems and applications with high-performance networking, computing, and storage technologies, including state-of-the-art designs for data processing and storage systems. Finally, the book considers some advanced research topics in high-performance big data computing, including designing high-performance deep learning over big data (DLoBD) stacks and HPC cloud technologies.

High-Performance Big Data Computing

High-Performance Big Data Computing PDF Author: Dhabaleswar K. Panda
Publisher: MIT Press
ISBN: 0262369427
Category : Computers
Languages : en
Pages : 275

Get Book Here

Book Description
An in-depth overview of an emerging field that brings together high-performance computing, big data processing, and deep lLearning. Over the last decade, the exponential explosion of data known as big data has changed the way we understand and harness the power of data. The emerging field of high-performance big data computing, which brings together high-performance computing (HPC), big data processing, and deep learning, aims to meet the challenges posed by large-scale data processing. This book offers an in-depth overview of high-performance big data computing and the associated technical issues, approaches, and solutions. The book covers basic concepts and necessary background knowledge, including data processing frameworks, storage systems, and hardware capabilities; offers a detailed discussion of technical issues in accelerating big data computing in terms of computation, communication, memory and storage, codesign, workload characterization and benchmarking, and system deployment and management; and surveys benchmarks and workloads for evaluating big data middleware systems. It presents a detailed discussion of big data computing systems and applications with high-performance networking, computing, and storage technologies, including state-of-the-art designs for data processing and storage systems. Finally, the book considers some advanced research topics in high-performance big data computing, including designing high-performance deep learning over big data (DLoBD) stacks and HPC cloud technologies.

High-Performance Big-Data Analytics

High-Performance Big-Data Analytics PDF Author: Pethuru Raj
Publisher: Springer
ISBN: 331920744X
Category : Computers
Languages : en
Pages : 443

Get Book Here

Book Description
This book presents a detailed review of high-performance computing infrastructures for next-generation big data and fast data analytics. Features: includes case studies and learning activities throughout the book and self-study exercises in every chapter; presents detailed case studies on social media analytics for intelligent businesses and on big data analytics (BDA) in the healthcare sector; describes the network infrastructure requirements for effective transfer of big data, and the storage infrastructure requirements of applications which generate big data; examines real-time analytics solutions; introduces in-database processing and in-memory analytics techniques for data mining; discusses the use of mainframes for handling real-time big data and the latest types of data management systems for BDA; provides information on the use of cluster, grid and cloud computing systems for BDA; reviews the peer-to-peer techniques and tools and the common information visualization techniques, used in BDA.

High-Performance Modelling and Simulation for Big Data Applications

High-Performance Modelling and Simulation for Big Data Applications PDF Author: Joanna Kołodziej
Publisher: Springer
ISBN: 3030162729
Category : Computers
Languages : en
Pages : 364

Get Book Here

Book Description
This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications.

Conquering Big Data with High Performance Computing

Conquering Big Data with High Performance Computing PDF Author: Ritu Arora
Publisher: Springer
ISBN: 3319337424
Category : Computers
Languages : en
Pages : 328

Get Book Here

Book Description
This book provides an overview of the resources and research projects that are bringing Big Data and High Performance Computing (HPC) on converging tracks. It demystifies Big Data and HPC for the reader by covering the primary resources, middleware, applications, and tools that enable the usage of HPC platforms for Big Data management and processing.Through interesting use-cases from traditional and non-traditional HPC domains, the book highlights the most critical challenges related to Big Data processing and management, and shows ways to mitigate them using HPC resources. Unlike most books on Big Data, it covers a variety of alternatives to Hadoop, and explains the differences between HPC platforms and Hadoop.Written by professionals and researchers in a range of departments and fields, this book is designed for anyone studying Big Data and its future directions. Those studying HPC will also find the content valuable.

Supercomputing Frontiers

Supercomputing Frontiers PDF Author: Rio Yokota
Publisher: Springer
ISBN: 3319699539
Category : Computers
Languages : en
Pages : 301

Get Book Here

Book Description
It constitutes the refereed proceedings of the 4th Asian Supercomputing Conference, SCFA 2018, held in Singapore in March 2018. Supercomputing Frontiers will be rebranded as Supercomputing Frontiers Asia (SCFA), which serves as the technical programme for SCA18. The technical programme for SCA18 consists of four tracks: Application, Algorithms & Libraries Programming System Software Architecture, Network/Communications & Management Data, Storage & Visualisation The 20 papers presented in this volume were carefully reviewed nd selected from 60 submissions.

Practical Big Data Analytics

Practical Big Data Analytics PDF Author: Nataraj Dasgupta
Publisher: Packt Publishing Ltd
ISBN: 1783554401
Category : Computers
Languages : en
Pages : 402

Get Book Here

Book Description
Get command of your organizational Big Data using the power of data science and analytics Key Features A perfect companion to boost your Big Data storing, processing, analyzing skills to help you take informed business decisions Work with the best tools such as Apache Hadoop, R, Python, and Spark for NoSQL platforms to perform massive online analyses Get expert tips on statistical inference, machine learning, mathematical modeling, and data visualization for Big Data Book Description Big Data analytics relates to the strategies used by organizations to collect, organize and analyze large amounts of data to uncover valuable business insights that otherwise cannot be analyzed through traditional systems. Crafting an enterprise-scale cost-efficient Big Data and machine learning solution to uncover insights and value from your organization's data is a challenge. Today, with hundreds of new Big Data systems, machine learning packages and BI Tools, selecting the right combination of technologies is an even greater challenge. This book will help you do that. With the help of this guide, you will be able to bridge the gap between the theoretical world of technology with the practical ground reality of building corporate Big Data and data science platforms. You will get hands-on exposure to Hadoop and Spark, build machine learning dashboards using R and R Shiny, create web-based apps using NoSQL databases such as MongoDB and even learn how to write R code for neural networks. By the end of the book, you will have a very clear and concrete understanding of what Big Data analytics means, how it drives revenues for organizations, and how you can develop your own Big Data analytics solution using different tools and methods articulated in this book. What you will learn - Get a 360-degree view into the world of Big Data, data science and machine learning - Broad range of technical and business Big Data analytics topics that caters to the interests of the technical experts as well as corporate IT executives - Get hands-on experience with industry-standard Big Data and machine learning tools such as Hadoop, Spark, MongoDB, KDB+ and R - Create production-grade machine learning BI Dashboards using R and R Shiny with step-by-step instructions - Learn how to combine open-source Big Data, machine learning and BI Tools to create low-cost business analytics applications - Understand corporate strategies for successful Big Data and data science projects - Go beyond general-purpose analytics to develop cutting-edge Big Data applications using emerging technologies Who this book is for The book is intended for existing and aspiring Big Data professionals who wish to become the go-to person in their organization when it comes to Big Data architecture, analytics, and governance. While no prior knowledge of Big Data or related technologies is assumed, it will be helpful to have some programming experience.

Research Anthology on Big Data Analytics, Architectures, and Applications

Research Anthology on Big Data Analytics, Architectures, and Applications PDF Author: Information Resources Management Association
Publisher: Engineering Science Reference
ISBN: 9781668436622
Category : Big data
Languages : en
Pages : 0

Get Book Here

Book Description
Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.

Big Data Analytics with Hadoop 3

Big Data Analytics with Hadoop 3 PDF Author: Sridhar Alla
Publisher: Packt Publishing Ltd
ISBN: 1788624955
Category : Computers
Languages : en
Pages : 471

Get Book Here

Book Description
Explore big data concepts, platforms, analytics, and their applications using the power of Hadoop 3 Key Features Learn Hadoop 3 to build effective big data analytics solutions on-premise and on cloud Integrate Hadoop with other big data tools such as R, Python, Apache Spark, and Apache Flink Exploit big data using Hadoop 3 with real-world examples Book Description Apache Hadoop is the most popular platform for big data processing, and can be combined with a host of other big data tools to build powerful analytics solutions. Big Data Analytics with Hadoop 3 shows you how to do just that, by providing insights into the software as well as its benefits with the help of practical examples. Once you have taken a tour of Hadoop 3’s latest features, you will get an overview of HDFS, MapReduce, and YARN, and how they enable faster, more efficient big data processing. You will then move on to learning how to integrate Hadoop with the open source tools, such as Python and R, to analyze and visualize data and perform statistical computing on big data. As you get acquainted with all this, you will explore how to use Hadoop 3 with Apache Spark and Apache Flink for real-time data analytics and stream processing. In addition to this, you will understand how to use Hadoop to build analytics solutions on the cloud and an end-to-end pipeline to perform big data analysis using practical use cases. By the end of this book, you will be well-versed with the analytical capabilities of the Hadoop ecosystem. You will be able to build powerful solutions to perform big data analytics and get insight effortlessly. What you will learn Explore the new features of Hadoop 3 along with HDFS, YARN, and MapReduce Get well-versed with the analytical capabilities of Hadoop ecosystem using practical examples Integrate Hadoop with R and Python for more efficient big data processing Learn to use Hadoop with Apache Spark and Apache Flink for real-time data analytics Set up a Hadoop cluster on AWS cloud Perform big data analytics on AWS using Elastic Map Reduce Who this book is for Big Data Analytics with Hadoop 3 is for you if you are looking to build high-performance analytics solutions for your enterprise or business using Hadoop 3’s powerful features, or you’re new to big data analytics. A basic understanding of the Java programming language is required.

Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities

Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities PDF Author: Segall, Richard S.
Publisher: IGI Global
ISBN: 1799827704
Category : Computers
Languages : en
Pages : 237

Get Book Here

Book Description
With the development of computing technologies in today’s modernized world, software packages have become easily accessible. Open source software, specifically, is a popular method for solving certain issues in the field of computer science. One key challenge is analyzing big data due to the high amounts that organizations are processing. Researchers and professionals need research on the foundations of open source software programs and how they can successfully analyze statistical data. Open Source Software for Statistical Analysis of Big Data: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of cost-free software possibilities for applications within data analysis and statistics with a specific focus on R and Python. Featuring coverage on a broad range of topics such as cluster analysis, time series forecasting, and machine learning, this book is ideally designed for researchers, developers, practitioners, engineers, academicians, scholars, and students who want to more fully understand in a brief and concise format the realm and technologies of open source software for big data and how it has been used to solve large-scale research problems in a multitude of disciplines.

Big Data

Big Data PDF Author: Bernard Marr
Publisher: John Wiley & Sons
ISBN: 1118965787
Category : Business & Economics
Languages : en
Pages : 256

Get Book Here

Book Description
Convert the promise of big data into real world results There is so much buzz around big data. We all need to know what it is and how it works - that much is obvious. But is a basic understanding of the theory enough to hold your own in strategy meetings? Probably. But what will set you apart from the rest is actually knowing how to USE big data to get solid, real-world business results - and putting that in place to improve performance. Big Data will give you a clear understanding, blueprint, and step-by-step approach to building your own big data strategy. This is a well-needed practical introduction to actually putting the topic into practice. Illustrated with numerous real-world examples from a cross section of companies and organisations, Big Data will take you through the five steps of the SMART model: Start with Strategy, Measure Metrics and Data, Apply Analytics, Report Results, Transform. Discusses how companies need to clearly define what it is they need to know Outlines how companies can collect relevant data and measure the metrics that will help them answer their most important business questions Addresses how the results of big data analytics can be visualised and communicated to ensure key decisions-makers understand them Includes many high-profile case studies from the author's work with some of the world's best known brands