Author: Marian K. Kazimierczuk
Publisher: John Wiley & Sons
ISBN: 1119964911
Category : Technology & Engineering
Languages : en
Pages : 510
Book Description
If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.
High-Frequency Magnetic Components
Author: Marian K. Kazimierczuk
Publisher: John Wiley & Sons
ISBN: 1119964911
Category : Technology & Engineering
Languages : en
Pages : 510
Book Description
If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.
Publisher: John Wiley & Sons
ISBN: 1119964911
Category : Technology & Engineering
Languages : en
Pages : 510
Book Description
If you are looking for a complete study of the fundamental concepts in magnetic theory, read this book. No other textbook covers magnetic components of inductors and transformers for high-frequency applications in detail. This unique text examines design techniques of the major types of inductors and transformers used for a wide variety of high-frequency applications including switching-mode power supplies (SMPS) and resonant circuits. It describes skin effect and proximity effect in detail to provide you with a sound understanding of high-frequency phenomena. As well as this, you will discover thorough coverage on: integrated inductors and the self-capacitance of inductors and transformers, with expressions for self-capacitances in magnetic components; criteria for selecting the core material, as well as core shape and size, and an evaluation of soft ferromagnetic materials used for magnetic cores; winding resistance at high frequencies; expressions for winding and core power losses when non-sinusoidal inductor or transformer current waveforms contain harmonics. Case studies, practical design examples and procedures (using the area product method and the geometry coefficient method) are expertly combined with concept-orientated explanations and student-friendly analysis. Supplied at the end of each chapter are summaries of the key concepts, review questions, and problems, the answers to which are available in a separate solutions manual. Such features make this a fantastic textbook for graduates, senior level undergraduates and professors in the area of power electronics in addition to electrical and computer engineering. This is also an inimitable reference guide for design engineers of power electronics circuits, high-frequency transformers and inductors in areas such as (SMPS) and RF power amplifiers and circuits.
Transformers and Inductors for Power Electronics
Author: W.G. Hurley
Publisher: John Wiley & Sons
ISBN: 1118544676
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Based on the fundamentals of electromagnetics, this clear and concise text explains basic and applied principles of transformer and inductor design for power electronic applications. It details both the theory and practice of inductors and transformers employed to filter currents, store electromagnetic energy, provide physical isolation between circuits, and perform stepping up and down of DC and AC voltages. The authors present a broad range of applications from modern power conversion systems. They provide rigorous design guidelines based on a robust methodology for inductor and transformer design. They offer real design examples, informed by proven and working field examples. Key features include: emphasis on high frequency design, including optimisation of the winding layout and treatment of non-sinusoidal waveforms a chapter on planar magnetic with analytical models and descriptions of the processing technologies analysis of the role of variable inductors, and their applications for power factor correction and solar power unique coverage on the measurements of inductance and transformer capacitance, as well as tests for core losses at high frequency worked examples in MATLAB, end-of-chapter problems, and an accompanying website containing solutions, a full set of instructors’ presentations, and copies of all the figures. Covering the basics of the magnetic components of power electronic converters, this book is a comprehensive reference for students and professional engineers dealing with specialised inductor and transformer design. It is especially useful for senior undergraduate and graduate students in electrical engineering and electrical energy systems, and engineers working with power supplies and energy conversion systems who want to update their knowledge on a field that has progressed considerably in recent years.
Publisher: John Wiley & Sons
ISBN: 1118544676
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Based on the fundamentals of electromagnetics, this clear and concise text explains basic and applied principles of transformer and inductor design for power electronic applications. It details both the theory and practice of inductors and transformers employed to filter currents, store electromagnetic energy, provide physical isolation between circuits, and perform stepping up and down of DC and AC voltages. The authors present a broad range of applications from modern power conversion systems. They provide rigorous design guidelines based on a robust methodology for inductor and transformer design. They offer real design examples, informed by proven and working field examples. Key features include: emphasis on high frequency design, including optimisation of the winding layout and treatment of non-sinusoidal waveforms a chapter on planar magnetic with analytical models and descriptions of the processing technologies analysis of the role of variable inductors, and their applications for power factor correction and solar power unique coverage on the measurements of inductance and transformer capacitance, as well as tests for core losses at high frequency worked examples in MATLAB, end-of-chapter problems, and an accompanying website containing solutions, a full set of instructors’ presentations, and copies of all the figures. Covering the basics of the magnetic components of power electronic converters, this book is a comprehensive reference for students and professional engineers dealing with specialised inductor and transformer design. It is especially useful for senior undergraduate and graduate students in electrical engineering and electrical energy systems, and engineers working with power supplies and energy conversion systems who want to update their knowledge on a field that has progressed considerably in recent years.
Designing Magnetic Components for High Frequency DC-DC Converters
Author: Colonel William T. McLyman
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 480
Book Description
Magnetic Components for Power Electronics
Author: Alex Goldman
Publisher: Springer Science & Business Media
ISBN: 1461508711
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Magnetic Components for Power Electronics concerns the important considerations necessary in the choice of the optimum magnetic component for power electronic applications. These include the topology of the converter circuit, the core material, shape, size and others such as cost and potential component suppliers. These are all important for the design engineer due to the emergence of new materials, changes in supplier management and the examples of several component choices. Suppliers using this volume will also understand the needs of designers. Highlights include: Emphasis on recently introduced new ferrite materials, such as those operating at megahertz frequencies and under higher DC drive conditions; Discussion of amorphous and nanocrystalline metal materials; New technologies such as resonance converters, power factors correction (PFC) and soft switching; Catalog information from over 40 magnetic component suppliers; Examples of methods of component choice for ferrites, amorphous nanocrystalline materials; Information on suppliers management changes such as those occurring at Siemens, Philips, Thomson and Allied-Signal; Attention to the increasingly important concerns about EMI. This book should be especially helpful for power electronic circuit designers, technical executives, and material science engineers involved with power electronic components.
Publisher: Springer Science & Business Media
ISBN: 1461508711
Category : Technology & Engineering
Languages : en
Pages : 292
Book Description
Magnetic Components for Power Electronics concerns the important considerations necessary in the choice of the optimum magnetic component for power electronic applications. These include the topology of the converter circuit, the core material, shape, size and others such as cost and potential component suppliers. These are all important for the design engineer due to the emergence of new materials, changes in supplier management and the examples of several component choices. Suppliers using this volume will also understand the needs of designers. Highlights include: Emphasis on recently introduced new ferrite materials, such as those operating at megahertz frequencies and under higher DC drive conditions; Discussion of amorphous and nanocrystalline metal materials; New technologies such as resonance converters, power factors correction (PFC) and soft switching; Catalog information from over 40 magnetic component suppliers; Examples of methods of component choice for ferrites, amorphous nanocrystalline materials; Information on suppliers management changes such as those occurring at Siemens, Philips, Thomson and Allied-Signal; Attention to the increasingly important concerns about EMI. This book should be especially helpful for power electronic circuit designers, technical executives, and material science engineers involved with power electronic components.
Magnetic Material for Motor Drive Systems
Author: Keisuke Fujisaki
Publisher: Springer Nature
ISBN: 9813299061
Category : Technology & Engineering
Languages : en
Pages : 431
Book Description
This book focuses on how to use magnetic material usefully for electrical motor drive system, especially electrical vehicles and power electronics. The contents have been selected in such a way that engineers in other fields might find some of the ideas difficult to grasp, but they can easily acquire a general or basic understanding of related concepts if they acquire even a rudimentary understanding of the selected contents.The cutting-edge technologies of magnetism are also explained. From the fundamental theory of magnetism to material, equipment, and applications, readers can understand the underlying concepts. Therefore, a new electric vehicle from the point of view of magnetic materials or a new magnetic material from the point of a view of electric vehicles can be envisioned: that is, magnetic material for motor drive systems based on fusion technology of an electromagnetic field. Magnetic material alone does not make up an electric vehicle, of course. Other components such as mechanical structure material, semiconductors, fuel cells, and electrically conductive material are important, and they are difficult to achieve. However, magnetic material involves one of the most important key technologies, and there are high expectations for its use in the future. It will be the future standard for motor-drive system researchers and of magneticmaterial researchers as well. This book is a first step in that direction.
Publisher: Springer Nature
ISBN: 9813299061
Category : Technology & Engineering
Languages : en
Pages : 431
Book Description
This book focuses on how to use magnetic material usefully for electrical motor drive system, especially electrical vehicles and power electronics. The contents have been selected in such a way that engineers in other fields might find some of the ideas difficult to grasp, but they can easily acquire a general or basic understanding of related concepts if they acquire even a rudimentary understanding of the selected contents.The cutting-edge technologies of magnetism are also explained. From the fundamental theory of magnetism to material, equipment, and applications, readers can understand the underlying concepts. Therefore, a new electric vehicle from the point of view of magnetic materials or a new magnetic material from the point of a view of electric vehicles can be envisioned: that is, magnetic material for motor drive systems based on fusion technology of an electromagnetic field. Magnetic material alone does not make up an electric vehicle, of course. Other components such as mechanical structure material, semiconductors, fuel cells, and electrically conductive material are important, and they are difficult to achieve. However, magnetic material involves one of the most important key technologies, and there are high expectations for its use in the future. It will be the future standard for motor-drive system researchers and of magneticmaterial researchers as well. This book is a first step in that direction.
Magnetic Components
Author: S. Smith
Publisher: Springer Science & Business Media
ISBN: 9401540004
Category : Science
Languages : en
Pages : 354
Book Description
Magnetic Components Design and Applications is intended primarily for the circuit designer and the power processing systems designer who have found that in order to be more effective they must learn not only to use, but to design their own magnetic components. It will also be useful to the trans former engineer, by showing how to develop high-performance designs quickly and easily by employing optimization criteria. This book is a design manual, a how-to-build-it manual, and a survey of some common and state-of-the-art practices in magnetic component design and high voltage insulation. It contains the data necessary to design power transformers on a gradient scale from 60 Hz to several hundred kilohertz, conventional and air-core current transformers, power reactors, saturable transformers and saturable reactors, and air core and conventional pulse transformers. Further, it con tains essential information about dielectric materials and fabrication meth ods, basic heat transfer technology, and electric field gradient control for high voltage applications. Mathematical methods of optimization are developed, and results are given in a number of areas, particularly in the area of maximizing power den sity in power transformers and the maximization of stored energy per unit volume for power reactors. For various reasons, each chapter is written from a different starting level.
Publisher: Springer Science & Business Media
ISBN: 9401540004
Category : Science
Languages : en
Pages : 354
Book Description
Magnetic Components Design and Applications is intended primarily for the circuit designer and the power processing systems designer who have found that in order to be more effective they must learn not only to use, but to design their own magnetic components. It will also be useful to the trans former engineer, by showing how to develop high-performance designs quickly and easily by employing optimization criteria. This book is a design manual, a how-to-build-it manual, and a survey of some common and state-of-the-art practices in magnetic component design and high voltage insulation. It contains the data necessary to design power transformers on a gradient scale from 60 Hz to several hundred kilohertz, conventional and air-core current transformers, power reactors, saturable transformers and saturable reactors, and air core and conventional pulse transformers. Further, it con tains essential information about dielectric materials and fabrication meth ods, basic heat transfer technology, and electric field gradient control for high voltage applications. Mathematical methods of optimization are developed, and results are given in a number of areas, particularly in the area of maximizing power den sity in power transformers and the maximization of stored energy per unit volume for power reactors. For various reasons, each chapter is written from a different starting level.
Inductors and Transformers for Power Electronics
Author: Vencislav Cekov Valchev
Publisher: CRC Press
ISBN: 142002728X
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Although they are some of the main components in the design of power electronic converters, the design of inductors and transformers is often still a trial-and-error process due to a long working-in time for these components. Inductors and Transformers for Power Electronics takes the guesswork out of the design and testing of these systems and provides a broad overview of all aspects of design. Inductors and Transformers for Power Electronics uses classical methods and numerical tools such as the finite element method to provide an overview of the basics and technological aspects of design. The authors present a fast approximation method useful in the early design as well as a more detailed analysis. They address design aspects such as the magnetic core and winding, eddy currents, insulation, thermal design, parasitic effects, and measurements. The text contains suggestions for improving designs in specific cases, models of thermal behavior with various levels of complexity, and several loss and thermal measurement techniques. This book offers in a single reference a concise representation of the large body of literature on the subject and supplies tools that designers desperately need to improve the accuracy and performance of their designs by eliminating trial-and-error.
Publisher: CRC Press
ISBN: 142002728X
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Although they are some of the main components in the design of power electronic converters, the design of inductors and transformers is often still a trial-and-error process due to a long working-in time for these components. Inductors and Transformers for Power Electronics takes the guesswork out of the design and testing of these systems and provides a broad overview of all aspects of design. Inductors and Transformers for Power Electronics uses classical methods and numerical tools such as the finite element method to provide an overview of the basics and technological aspects of design. The authors present a fast approximation method useful in the early design as well as a more detailed analysis. They address design aspects such as the magnetic core and winding, eddy currents, insulation, thermal design, parasitic effects, and measurements. The text contains suggestions for improving designs in specific cases, models of thermal behavior with various levels of complexity, and several loss and thermal measurement techniques. This book offers in a single reference a concise representation of the large body of literature on the subject and supplies tools that designers desperately need to improve the accuracy and performance of their designs by eliminating trial-and-error.
2020 4th International Conference on HVDC (HVDC)
Author: IEEE Staff
Publisher:
ISBN: 9781728175942
Category :
Languages : en
Pages :
Book Description
This conference will feature plenary speeches, tutorials, and technical sessions on HVDC technologies, including LCC HVDC, VSC HVDC, HVDC power grids, and DC power systems
Publisher:
ISBN: 9781728175942
Category :
Languages : en
Pages :
Book Description
This conference will feature plenary speeches, tutorials, and technical sessions on HVDC technologies, including LCC HVDC, VSC HVDC, HVDC power grids, and DC power systems
On the perspectives of SiC MOSFETs in high-frequency and high-power isolated DC/DC converters
Author: Eial Awwad, Abdullah
Publisher: Universitätsverlag der TU Berlin
ISBN: 3798330964
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
Increasing demand for efficiency and power density pushes Si-based devices to some of their inherent material limits, including those related to temperature operation, switching frequency, and blocking voltage. Recently, SiC-based power devices are promising candidates for high-power and high-frequency switching applications. Today, SiC MOSFETs are commercially available from several manufacturers. Although technology affiliated with SiC MOSFETs is improving rapidly, many challenges remain, and some of them are investigated in this work. The research work in this dissertation is divided into the three following parts. Firstly, the static and switching characteristics of the state-of-the-art 1.2 kV planar and double-trench SiC MOSFETs from two different manufacturers are evaluated. The effects of different biasing voltages, DC link voltages, and temperatures are analysed. The characterisation results show that the devices exhibit superior switching performances under different operating conditions. Moreover, several aspects of using the SiC MOSFET’s body diode in a DC/DC converter are investigated, comparing the body-diodes of planar and double-trench devices. Reverse recovery is evaluated in switching tests considering the case temperature, switching rate, forward current, and applied voltage. Based on the measurement results, the junction temperature is estimated to guarantee safe operation. A simple electro-thermal model is proposed in order to estimate the maximum allowed switching frequency based on the thermal design of the SiC devices. Using these results, hard- and soft-switching converters are designed, and devices are characterised as being in continuous operation at a very high switching frequency of 1 MHz. Thereafter, the SiC MOSFETs are operated in a continuous mode in a 10 kW / 100-250 kHz buck converter, comparing synchronous rectification, the use of the body diode, and the use of an external Schottky diode. Further, the parallel operation of the planar devices is considered. Thus, the paralleling of SiC MOSFETs is investigated before comparing the devices in continuous converter operation. In this regard, the impact of the most common mismatch parameters on the static and dynamic current sharing of the transistors is evaluated, showing that paralleling of SiC MOSFETs is feasible. Subsequently, an analytical model of SiC MOSFETs for switching loss optimisation is proposed. The analytical model exhibits relatively close agreement with measurement results under different test conditions. The proposed model tracks the oscillation effectively during both turn-on and –off transitions. This has been achieved by considering the influence of the most crucial parasitic elements in both power and gate loops. In the second part, a comprehensive short-circuit ruggedness evaluation focusing on different failure modes of the planar and double-trench SiC devices is presented. The effects of different biasing voltages, DC link voltages, and gate resistances are evaluated. Additionally, the temperature-dependence of the short-circuit capability is evaluated, and the associated failure modes are analysed. Subsequently, the design and test of two different methods for overcurrent protection are proposed. The desaturation technique is applied to the SiC MOSFETs and compared to a second method that depends on the stray inductance of the devices. Finally, the benefits of using SiC devices in continuous high-frequency, high-power DC/DC converters is experimentally evaluated. In this regard, a design optimisation of a high-frequency transformer is introduced, and the impact of different core materials, conductor designs, and winding arrangements are evaluated. A ZVZCS Phase-Shift Full-Bridge unidirectional DC/DC converter is proposed, using only the parasitic leakage inductance of the transformer. Experimental results for a 10 kW, (100-250) kHz prototype indicate an efficiency of up to 98.1% for the whole converter. Furthermore, an optimized control method is proposed to minimise the circulation current in the isolated bidirectional dual active bridge DC/DC converter, based on a modified dual-phase-shift control method. This control method is also experimentally compared with traditional single-phase shift control, yielding a significant improvement in efficiency. The experimental results confirm the theoretical analysis and show that the proposed control can enhance the overall converter efficiency and expand the ZVZCS range. Die steigende Nachfrage nach Effizienz und Leistungsdichte bringt Si-basierte eistungsbauteile an einige inhärente Materialgrenzen, die unter anderem mit der Temperaturbelastung, der Schaltfrequenz und der Blockierspannung in Zusammenhang stehen. In jüngster Zeit sind SiC-basierte Leistungsbauelemente vielversprechende Kandidaten für Hochleistungs- und Hochfrequenzanwendungen. Aktuell sind SiC-MOSFETs von mehreren Herstellern im Handel erhältlich. Obwohl sich die Technologie der SiC-MOSFETs rasch verbessert, werden viele Herausforderungen bestehen bleiben. Einige dieser Herausforderungen werden in dieser Arbeit untersucht. Die Untersuchungen in dieser Dissertation gliedern sich in die drei folgenden Teile: Im ersten Teil erfolgt, die statische und die transiente Charakterisierung der aktuellen 1,2 kV Planarund Doubletrench SiC-MOSFETs verschiedener Hersteller. Die Auswirkungen unterschiedlicher Gatespannungen, Zwischenkreisspannungen und Temperaturen werden analysiert. Die Ergebnisse der Charakterisierung zeigen, dass die Bauteile überlegene Schaltleistungen unter verschiedenen Betriebsbedingungen aufweisen. Darüber hinaus wird der Einsatz der internen SiC-Bodydioden in einem DC/DC-Wandler untersucht, wobei die Unterschiede zwischen Planar- und Doppeltrench-Bauteilen aufgezeigt werden. Das Reverse-Recovery-Verhalten wird unter Berücksichtigung der Gehäusetemperatur, der Schaltgeschwindigkeit, des Durchlassstroms und der angelegten Spannung bewertet. Anhand der Messergebnisse wird die Sperrschichttemperatur geschätzt, damit ein sicherer Betrieb gewährleistet ist. Ein einfaches elektrothermisches Modell wird vorgestellt, um die maximal zulässige Schaltfrequenz auf der Grundlage des thermischen Designs der SiC-Bauteile abzuschätzen. Anhand dieser Ergebnisse werden hart- und weichschaltende Umrichter konzipiert und die Bauteile werden im Dauerbetrieb mit einer sehr hohen Schaltfrequenz von 1 MHz untersucht. Danach werden die SiC-MOSFETs im Dauerbetrieb in einem 10 kW / 100-250 kHz-Tiefsetzsteller betrieben. Dabei wird die Synchrongleichrichtung, die Verwendung der internen Diode und die Verwendung einer externen Schottky-Diode verglichen. Außerdem wird die Parallelisierung von SiC-MOSFETs untersucht, bevor die Parallelschaltung der verschiedenen Bauelemente ebenso im kontinuierlichen Konverterbetrieb verglichen wird. Es wird der Einfluss der häufigsten Parametervariationen auf die statische und dynamische Stromaufteilung der Transistoren analysiert, was zeigt, dass eine Parallelisierung von SiC-MOSFETs möglich ist. Anschließend wird ein analytisches Modell der SiC-MOSFETs zur Schaltverlustoptimierung vorgeschlagen. Das analytische Modell zeigt eine relativ enge Übereinstimmung mit den Messergebnissen unter verschiedenen Testbedingungen. Das vorgeschlagene Modell bildet die Schwingungen sowohl beim Ein- als auch beim Ausschalten effektiv nach. Dies wurde durch die Berücksichtigung der wichtigsten parasitären Elemente in Strom- und Gatekreisen erreicht. Im zweiten Teil wird eine umfassende Bewertung der Kurzschlussfestigkeit mit Fokus auf verschiedene Ausfallmodi der planaren und double-trench SiC-Bauelemente vorgestellt. Die Auswirkungen unterschiedlicher Gatespannungen, Zwischenkreisspannungen und Gate-Widerstände werden ausgewertet. Zusätzlich wird die temperaturabhängige Kurzschlussfähigkeit ausgewertet und die zugehörigen Fehlerfälle werden analysiert. Anschließend wird die Auslegung und Prüfung von zwei verschiedenen Verfahren zum Überstromschutz evaluiert. Die „Desaturation“-Technik wird auf SiC-MOSFETs angewendet und mit einer zweiten Methode verglichen, welche die parasitäre Induktivität der Bauelemente nutzt. Schließlich wird der Nutzen des Einsatzes von SiC-Bauteilen in kontinuierlichen Hochfrequenz-Hochleistungs-DC/DC-Wandlern experimentell untersucht. In diesem Zusammenhang wird eine Designoptimierung eines Hochfrequenztransformators vorgestellt und der Einfluss verschiedener Kernmaterialien, Leiterausführungen und Wicklungsanordnungen wird bewertet. Es wird ein unidirektionaler ZVZCS Vollbrücken-DC/DC-Wandler vorgestellt, der nur die parasitäre Streuinduktivität des Transformators verwendet. Experimentelle Ergebnisse für einen 10 kW, (100-250) kHz Prototyp zeigen einenWirkungsgrad von bis zu 98,1% für den gesamten Umrichter. Abschließend wird ein optimiertes Regelverfahren verwendet, welches auf einem modifizierten Dual-Phase-Shift-Regelverfahren basiert, um den Kreisstrom im isolierten bidirektionalen Dual-Aktiv-Brücken-DC/DC-Wandler zu minimieren. Diese Regelmethode wird experimentell mit der herkömmlichen Single-Phase-Shift-Regelung verglichen. Hierbei zeigt sich eine deutliche Effizienzsteigerung durch die neue Regelmethode. Die experimentellen Ergebnisse bestätigen die theoretische Analyse und zeigen, dass die vorgeschlagene Regelung den Gesamtwirkungsgrad des Umrichters erhöhen und den ZVZCS-Bereich erweitern kann.
Publisher: Universitätsverlag der TU Berlin
ISBN: 3798330964
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
Increasing demand for efficiency and power density pushes Si-based devices to some of their inherent material limits, including those related to temperature operation, switching frequency, and blocking voltage. Recently, SiC-based power devices are promising candidates for high-power and high-frequency switching applications. Today, SiC MOSFETs are commercially available from several manufacturers. Although technology affiliated with SiC MOSFETs is improving rapidly, many challenges remain, and some of them are investigated in this work. The research work in this dissertation is divided into the three following parts. Firstly, the static and switching characteristics of the state-of-the-art 1.2 kV planar and double-trench SiC MOSFETs from two different manufacturers are evaluated. The effects of different biasing voltages, DC link voltages, and temperatures are analysed. The characterisation results show that the devices exhibit superior switching performances under different operating conditions. Moreover, several aspects of using the SiC MOSFET’s body diode in a DC/DC converter are investigated, comparing the body-diodes of planar and double-trench devices. Reverse recovery is evaluated in switching tests considering the case temperature, switching rate, forward current, and applied voltage. Based on the measurement results, the junction temperature is estimated to guarantee safe operation. A simple electro-thermal model is proposed in order to estimate the maximum allowed switching frequency based on the thermal design of the SiC devices. Using these results, hard- and soft-switching converters are designed, and devices are characterised as being in continuous operation at a very high switching frequency of 1 MHz. Thereafter, the SiC MOSFETs are operated in a continuous mode in a 10 kW / 100-250 kHz buck converter, comparing synchronous rectification, the use of the body diode, and the use of an external Schottky diode. Further, the parallel operation of the planar devices is considered. Thus, the paralleling of SiC MOSFETs is investigated before comparing the devices in continuous converter operation. In this regard, the impact of the most common mismatch parameters on the static and dynamic current sharing of the transistors is evaluated, showing that paralleling of SiC MOSFETs is feasible. Subsequently, an analytical model of SiC MOSFETs for switching loss optimisation is proposed. The analytical model exhibits relatively close agreement with measurement results under different test conditions. The proposed model tracks the oscillation effectively during both turn-on and –off transitions. This has been achieved by considering the influence of the most crucial parasitic elements in both power and gate loops. In the second part, a comprehensive short-circuit ruggedness evaluation focusing on different failure modes of the planar and double-trench SiC devices is presented. The effects of different biasing voltages, DC link voltages, and gate resistances are evaluated. Additionally, the temperature-dependence of the short-circuit capability is evaluated, and the associated failure modes are analysed. Subsequently, the design and test of two different methods for overcurrent protection are proposed. The desaturation technique is applied to the SiC MOSFETs and compared to a second method that depends on the stray inductance of the devices. Finally, the benefits of using SiC devices in continuous high-frequency, high-power DC/DC converters is experimentally evaluated. In this regard, a design optimisation of a high-frequency transformer is introduced, and the impact of different core materials, conductor designs, and winding arrangements are evaluated. A ZVZCS Phase-Shift Full-Bridge unidirectional DC/DC converter is proposed, using only the parasitic leakage inductance of the transformer. Experimental results for a 10 kW, (100-250) kHz prototype indicate an efficiency of up to 98.1% for the whole converter. Furthermore, an optimized control method is proposed to minimise the circulation current in the isolated bidirectional dual active bridge DC/DC converter, based on a modified dual-phase-shift control method. This control method is also experimentally compared with traditional single-phase shift control, yielding a significant improvement in efficiency. The experimental results confirm the theoretical analysis and show that the proposed control can enhance the overall converter efficiency and expand the ZVZCS range. Die steigende Nachfrage nach Effizienz und Leistungsdichte bringt Si-basierte eistungsbauteile an einige inhärente Materialgrenzen, die unter anderem mit der Temperaturbelastung, der Schaltfrequenz und der Blockierspannung in Zusammenhang stehen. In jüngster Zeit sind SiC-basierte Leistungsbauelemente vielversprechende Kandidaten für Hochleistungs- und Hochfrequenzanwendungen. Aktuell sind SiC-MOSFETs von mehreren Herstellern im Handel erhältlich. Obwohl sich die Technologie der SiC-MOSFETs rasch verbessert, werden viele Herausforderungen bestehen bleiben. Einige dieser Herausforderungen werden in dieser Arbeit untersucht. Die Untersuchungen in dieser Dissertation gliedern sich in die drei folgenden Teile: Im ersten Teil erfolgt, die statische und die transiente Charakterisierung der aktuellen 1,2 kV Planarund Doubletrench SiC-MOSFETs verschiedener Hersteller. Die Auswirkungen unterschiedlicher Gatespannungen, Zwischenkreisspannungen und Temperaturen werden analysiert. Die Ergebnisse der Charakterisierung zeigen, dass die Bauteile überlegene Schaltleistungen unter verschiedenen Betriebsbedingungen aufweisen. Darüber hinaus wird der Einsatz der internen SiC-Bodydioden in einem DC/DC-Wandler untersucht, wobei die Unterschiede zwischen Planar- und Doppeltrench-Bauteilen aufgezeigt werden. Das Reverse-Recovery-Verhalten wird unter Berücksichtigung der Gehäusetemperatur, der Schaltgeschwindigkeit, des Durchlassstroms und der angelegten Spannung bewertet. Anhand der Messergebnisse wird die Sperrschichttemperatur geschätzt, damit ein sicherer Betrieb gewährleistet ist. Ein einfaches elektrothermisches Modell wird vorgestellt, um die maximal zulässige Schaltfrequenz auf der Grundlage des thermischen Designs der SiC-Bauteile abzuschätzen. Anhand dieser Ergebnisse werden hart- und weichschaltende Umrichter konzipiert und die Bauteile werden im Dauerbetrieb mit einer sehr hohen Schaltfrequenz von 1 MHz untersucht. Danach werden die SiC-MOSFETs im Dauerbetrieb in einem 10 kW / 100-250 kHz-Tiefsetzsteller betrieben. Dabei wird die Synchrongleichrichtung, die Verwendung der internen Diode und die Verwendung einer externen Schottky-Diode verglichen. Außerdem wird die Parallelisierung von SiC-MOSFETs untersucht, bevor die Parallelschaltung der verschiedenen Bauelemente ebenso im kontinuierlichen Konverterbetrieb verglichen wird. Es wird der Einfluss der häufigsten Parametervariationen auf die statische und dynamische Stromaufteilung der Transistoren analysiert, was zeigt, dass eine Parallelisierung von SiC-MOSFETs möglich ist. Anschließend wird ein analytisches Modell der SiC-MOSFETs zur Schaltverlustoptimierung vorgeschlagen. Das analytische Modell zeigt eine relativ enge Übereinstimmung mit den Messergebnissen unter verschiedenen Testbedingungen. Das vorgeschlagene Modell bildet die Schwingungen sowohl beim Ein- als auch beim Ausschalten effektiv nach. Dies wurde durch die Berücksichtigung der wichtigsten parasitären Elemente in Strom- und Gatekreisen erreicht. Im zweiten Teil wird eine umfassende Bewertung der Kurzschlussfestigkeit mit Fokus auf verschiedene Ausfallmodi der planaren und double-trench SiC-Bauelemente vorgestellt. Die Auswirkungen unterschiedlicher Gatespannungen, Zwischenkreisspannungen und Gate-Widerstände werden ausgewertet. Zusätzlich wird die temperaturabhängige Kurzschlussfähigkeit ausgewertet und die zugehörigen Fehlerfälle werden analysiert. Anschließend wird die Auslegung und Prüfung von zwei verschiedenen Verfahren zum Überstromschutz evaluiert. Die „Desaturation“-Technik wird auf SiC-MOSFETs angewendet und mit einer zweiten Methode verglichen, welche die parasitäre Induktivität der Bauelemente nutzt. Schließlich wird der Nutzen des Einsatzes von SiC-Bauteilen in kontinuierlichen Hochfrequenz-Hochleistungs-DC/DC-Wandlern experimentell untersucht. In diesem Zusammenhang wird eine Designoptimierung eines Hochfrequenztransformators vorgestellt und der Einfluss verschiedener Kernmaterialien, Leiterausführungen und Wicklungsanordnungen wird bewertet. Es wird ein unidirektionaler ZVZCS Vollbrücken-DC/DC-Wandler vorgestellt, der nur die parasitäre Streuinduktivität des Transformators verwendet. Experimentelle Ergebnisse für einen 10 kW, (100-250) kHz Prototyp zeigen einenWirkungsgrad von bis zu 98,1% für den gesamten Umrichter. Abschließend wird ein optimiertes Regelverfahren verwendet, welches auf einem modifizierten Dual-Phase-Shift-Regelverfahren basiert, um den Kreisstrom im isolierten bidirektionalen Dual-Aktiv-Brücken-DC/DC-Wandler zu minimieren. Diese Regelmethode wird experimentell mit der herkömmlichen Single-Phase-Shift-Regelung verglichen. Hierbei zeigt sich eine deutliche Effizienzsteigerung durch die neue Regelmethode. Die experimentellen Ergebnisse bestätigen die theoretische Analyse und zeigen, dass die vorgeschlagene Regelung den Gesamtwirkungsgrad des Umrichters erhöhen und den ZVZCS-Bereich erweitern kann.
Design and Control of Power Converters 2020
Author: Manuel Arias
Publisher: MDPI
ISBN: 3036507027
Category : Technology & Engineering
Languages : en
Pages : 188
Book Description
In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields.
Publisher: MDPI
ISBN: 3036507027
Category : Technology & Engineering
Languages : en
Pages : 188
Book Description
In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields.