Author: Joao Cruz
Publisher: Springer Science & Business Media
ISBN: 3540748954
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
The authors of this timely reference provide an updated and global view on ocean wave energy conversion – and they do so for wave energy developers as well as for students and professors. The book is orientated to the practical solutions that this new industry has found so far and the problems that any device needs to face. It describes the actual principles applied to machines that convert wave power to electricity and examines state-of-the-art modern systems.
Numerical Modelling of Wave Energy Converters
Author: Matt Folley
Publisher: Academic Press
ISBN: 0128032111
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques. The authors provide clear details on the subject and guidance on its use for WEC design, covering topics such as boundary element methods, frequency domain models, spectral domain models, time domain models, non linear potential flow models, CFD models, semi analytical models, phase resolving wave propagation models, phase averaging wave propagation models, parametric design and control optimization, mean annual energy yield, hydrodynamic loads assessment, and environmental impact assessment. Each chapter starts by defining the fundamental principles underlying the numerical modelling technique and finishes with a discussion of the technique's limitations and a summary of the main points in the chapter. The contents of the chapters are not limited to a description of the mathematics, but also include details and discussion of the current available tools, examples available in the literature, and verification, validation, and computational requirements. In this way, the key points of each modelling technique can be identified without having to get deeply involved in the mathematical representation that is at the core of each chapter. The book is separated into four parts. The first two parts deal with modelling single wave energy converters; the third part considers the modelling of arrays; and the final part looks at the application of the different modelling techniques to the four most common uses of numerical models. It is ideal for graduate engineers and scientists interested in numerical modelling of wave energy converters, and decision-makers who must review different modelling techniques and assess their suitability and output. - Consolidates in one volume information and techniques for the numerical modelling of wave energy converters and converter arrays, which has, up until now, been spread around multiple academic journals and conference proceedings making it difficult to access - Presents a comparative review of the different numerical modelling techniques applied to wave energy converters, discussing their limitations, current available tools, examples, and verification, validation, and computational requirements - Includes practical examples and simulations available for download at the book's companion website - Identifies key points of each modelling technique without getting deeply involved in the mathematical representation
Publisher: Academic Press
ISBN: 0128032111
Category : Technology & Engineering
Languages : en
Pages : 308
Book Description
Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques. The authors provide clear details on the subject and guidance on its use for WEC design, covering topics such as boundary element methods, frequency domain models, spectral domain models, time domain models, non linear potential flow models, CFD models, semi analytical models, phase resolving wave propagation models, phase averaging wave propagation models, parametric design and control optimization, mean annual energy yield, hydrodynamic loads assessment, and environmental impact assessment. Each chapter starts by defining the fundamental principles underlying the numerical modelling technique and finishes with a discussion of the technique's limitations and a summary of the main points in the chapter. The contents of the chapters are not limited to a description of the mathematics, but also include details and discussion of the current available tools, examples available in the literature, and verification, validation, and computational requirements. In this way, the key points of each modelling technique can be identified without having to get deeply involved in the mathematical representation that is at the core of each chapter. The book is separated into four parts. The first two parts deal with modelling single wave energy converters; the third part considers the modelling of arrays; and the final part looks at the application of the different modelling techniques to the four most common uses of numerical models. It is ideal for graduate engineers and scientists interested in numerical modelling of wave energy converters, and decision-makers who must review different modelling techniques and assess their suitability and output. - Consolidates in one volume information and techniques for the numerical modelling of wave energy converters and converter arrays, which has, up until now, been spread around multiple academic journals and conference proceedings making it difficult to access - Presents a comparative review of the different numerical modelling techniques applied to wave energy converters, discussing their limitations, current available tools, examples, and verification, validation, and computational requirements - Includes practical examples and simulations available for download at the book's companion website - Identifies key points of each modelling technique without getting deeply involved in the mathematical representation
Ocean Wave Energy
Author: Joao Cruz
Publisher: Springer Science & Business Media
ISBN: 3540748954
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
The authors of this timely reference provide an updated and global view on ocean wave energy conversion – and they do so for wave energy developers as well as for students and professors. The book is orientated to the practical solutions that this new industry has found so far and the problems that any device needs to face. It describes the actual principles applied to machines that convert wave power to electricity and examines state-of-the-art modern systems.
Publisher: Springer Science & Business Media
ISBN: 3540748954
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
The authors of this timely reference provide an updated and global view on ocean wave energy conversion – and they do so for wave energy developers as well as for students and professors. The book is orientated to the practical solutions that this new industry has found so far and the problems that any device needs to face. It describes the actual principles applied to machines that convert wave power to electricity and examines state-of-the-art modern systems.
Handbook of Ocean Wave Energy
Author: Arthur Pecher
Publisher: Springer
ISBN: 331939889X
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.
Publisher: Springer
ISBN: 331939889X
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.
Innovations in Renewable Energies Offshore
Author: Carlos Guedes Soares
Publisher: CRC Press
ISBN: 1040326137
Category : Technology & Engineering
Languages : en
Pages : 1135
Book Description
The contribution of renewable energy offshore to the total energy production is increasing, as is the interest in this topic. Innovations in Renewable Energies Offshore includes the papers presented at the 6th International Conference on Renewable Energies Offshore (RENEW 2024, 19-21 November, 2024, Lisbon, Portugal), and aims to contribute to the knowledge about the developments and experience obtained in concept development, design and operation of such devices. The contributions cover a wide range of topics, including: Resource assessment Wind Energy Wave Energy Tidal Energy Photovoltaic Energy Hydrogen Offshore Multiuse Platforms PTO design Economic assessment Materials and structural design Maintenance Vessels Innovations in Renewable Energies Offshore will be of interest to academics and professionals involved or interested in applications of renewable energy resources offshore.
Publisher: CRC Press
ISBN: 1040326137
Category : Technology & Engineering
Languages : en
Pages : 1135
Book Description
The contribution of renewable energy offshore to the total energy production is increasing, as is the interest in this topic. Innovations in Renewable Energies Offshore includes the papers presented at the 6th International Conference on Renewable Energies Offshore (RENEW 2024, 19-21 November, 2024, Lisbon, Portugal), and aims to contribute to the knowledge about the developments and experience obtained in concept development, design and operation of such devices. The contributions cover a wide range of topics, including: Resource assessment Wind Energy Wave Energy Tidal Energy Photovoltaic Energy Hydrogen Offshore Multiuse Platforms PTO design Economic assessment Materials and structural design Maintenance Vessels Innovations in Renewable Energies Offshore will be of interest to academics and professionals involved or interested in applications of renewable energy resources offshore.
Airborne Wind Energy
Author: Roland Schmehl
Publisher: Springer
ISBN: 9811019479
Category : Technology & Engineering
Languages : en
Pages : 752
Book Description
This book provides in-depth coverage of the latest research and development activities concerning innovative wind energy technologies intended to replace fossil fuels on an economical basis. A characteristic feature of the various conversion concepts discussed is the use of tethered flying devices to substantially reduce the material consumption per installed unit and to access wind energy at higher altitudes, where the wind is more consistent. The introductory chapter describes the emergence and economic dimension of airborne wind energy. Focusing on “Fundamentals, Modeling & Simulation”, Part I includes six contributions that describe quasi-steady as well as dynamic models and simulations of airborne wind energy systems or individual components. Shifting the spotlight to “Control, Optimization & Flight State Measurement”, Part II combines one chapter on measurement techniques with five chapters on control of kite and ground stations, and two chapters on optimization. Part III on “Concept Design & Analysis” includes three chapters that present and analyze novel harvesting concepts as well as two chapters on system component design. Part IV, which centers on “Implemented Concepts”, presents five chapters on established system concepts and one chapter about a subsystem for automatic launching and landing of kites. In closing, Part V focuses with four chapters on “Technology Deployment” related to market and financing strategies, as well as on regulation and the environment. The book builds on the success of the first volume “Airborne Wind Energy” (Springer, 2013), and offers a self-contained reference guide for researchers, scientists, professionals and students. The respective chapters were contributed by a broad variety of authors: academics, practicing engineers and inventors, all of whom are experts in their respective fields.
Publisher: Springer
ISBN: 9811019479
Category : Technology & Engineering
Languages : en
Pages : 752
Book Description
This book provides in-depth coverage of the latest research and development activities concerning innovative wind energy technologies intended to replace fossil fuels on an economical basis. A characteristic feature of the various conversion concepts discussed is the use of tethered flying devices to substantially reduce the material consumption per installed unit and to access wind energy at higher altitudes, where the wind is more consistent. The introductory chapter describes the emergence and economic dimension of airborne wind energy. Focusing on “Fundamentals, Modeling & Simulation”, Part I includes six contributions that describe quasi-steady as well as dynamic models and simulations of airborne wind energy systems or individual components. Shifting the spotlight to “Control, Optimization & Flight State Measurement”, Part II combines one chapter on measurement techniques with five chapters on control of kite and ground stations, and two chapters on optimization. Part III on “Concept Design & Analysis” includes three chapters that present and analyze novel harvesting concepts as well as two chapters on system component design. Part IV, which centers on “Implemented Concepts”, presents five chapters on established system concepts and one chapter about a subsystem for automatic launching and landing of kites. In closing, Part V focuses with four chapters on “Technology Deployment” related to market and financing strategies, as well as on regulation and the environment. The book builds on the success of the first volume “Airborne Wind Energy” (Springer, 2013), and offers a self-contained reference guide for researchers, scientists, professionals and students. The respective chapters were contributed by a broad variety of authors: academics, practicing engineers and inventors, all of whom are experts in their respective fields.
Floating Offshore Energy Devices
Author: Ciarán Mc Goldrick
Publisher: Materials Research Forum LLC
ISBN: 1644901722
Category : Technology & Engineering
Languages : en
Pages : 94
Book Description
This new conference series aims at presenting state-of-the-art research in the development of offshore energy machines and devices. Topics covered include: Present and future offshore wind and wave devices; innovations in modelling, design, control, operation and testing of offshore energy machines, and the impact of these devices on the marine environment. Keywords: Oscillating Water Column, Monitoring of Wind Turbines, Coriolis Effect, Internal Ocean Waves, Rapid Distortion Theory, Modelling of Ocean Wave Energy Converters, Pendulum-Type Vibration, Wind Turbine Fault Prediction, Short-Term Wind Power Forecasting, Floating Tidal Energy Conversion, Antarctic Circumpolar Current, Shallow Water Large Scale Modelling.
Publisher: Materials Research Forum LLC
ISBN: 1644901722
Category : Technology & Engineering
Languages : en
Pages : 94
Book Description
This new conference series aims at presenting state-of-the-art research in the development of offshore energy machines and devices. Topics covered include: Present and future offshore wind and wave devices; innovations in modelling, design, control, operation and testing of offshore energy machines, and the impact of these devices on the marine environment. Keywords: Oscillating Water Column, Monitoring of Wind Turbines, Coriolis Effect, Internal Ocean Waves, Rapid Distortion Theory, Modelling of Ocean Wave Energy Converters, Pendulum-Type Vibration, Wind Turbine Fault Prediction, Short-Term Wind Power Forecasting, Floating Tidal Energy Conversion, Antarctic Circumpolar Current, Shallow Water Large Scale Modelling.
Ocean Waves and Oscillating Systems
Author: Johannes Falnes
Publisher: Cambridge University Press
ISBN: 1108481663
Category : Science
Languages : en
Pages : 319
Book Description
Understand the absorption of energy from ocean waves by means of oscillating systems with this useful new edition. Essential for engineers, researchers, and graduate students, and an indispensable tool for those who work in this field.
Publisher: Cambridge University Press
ISBN: 1108481663
Category : Science
Languages : en
Pages : 319
Book Description
Understand the absorption of energy from ocean waves by means of oscillating systems with this useful new edition. Essential for engineers, researchers, and graduate students, and an indispensable tool for those who work in this field.
Ocean Wave Energy Conversion
Author: Aurelien Babarit
Publisher: Elsevier
ISBN: 0081023901
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
The waves that animate the surface of the oceans represent a deposit of renewable energy that for the most part is still unexploited today. This is not for lack of effort, as for more than two hundred years inventors, researchers and engineers have struggled to develop processes and systems to recover the energy of the waves. While all of these efforts have failed to converge towards a satisfactory technological solution, the result is a rich scientific and technical literature as well as extensive and varied feedback from experience. For the uninitiated, this abundance is an obstacle. In order to facilitate familiarization with the subject, we propose in this work a summary of the state of knowledge on the potential of wave energy as well as on the processes and technologies of its recovery (wave energy converters). In particular, we focus on the problem of positioning wave energy in the electricity market, the development of wave energy conversion technologies from a historical perspective, and finally the energy performance of the devices. This work is aimed at students, researchers, developers, industry professionals and decision makers who wish to acquire a global perspective and the necessary tools to understand the field. - Reviews the state of knowledge and developments on wave energy recovery - Presents the history of wave energy recovery - Classifies the various systems for recovering this type of energy
Publisher: Elsevier
ISBN: 0081023901
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
The waves that animate the surface of the oceans represent a deposit of renewable energy that for the most part is still unexploited today. This is not for lack of effort, as for more than two hundred years inventors, researchers and engineers have struggled to develop processes and systems to recover the energy of the waves. While all of these efforts have failed to converge towards a satisfactory technological solution, the result is a rich scientific and technical literature as well as extensive and varied feedback from experience. For the uninitiated, this abundance is an obstacle. In order to facilitate familiarization with the subject, we propose in this work a summary of the state of knowledge on the potential of wave energy as well as on the processes and technologies of its recovery (wave energy converters). In particular, we focus on the problem of positioning wave energy in the electricity market, the development of wave energy conversion technologies from a historical perspective, and finally the energy performance of the devices. This work is aimed at students, researchers, developers, industry professionals and decision makers who wish to acquire a global perspective and the necessary tools to understand the field. - Reviews the state of knowledge and developments on wave energy recovery - Presents the history of wave energy recovery - Classifies the various systems for recovering this type of energy
Renewable Energy in Marine Environment
Author: Eugen Rusu
Publisher: MDPI
ISBN: 3039285289
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
The effects of human-caused global warming are obvious, requiring new strategies and approaches. The concept of business-as-usual is now no longer beneficial. Extraction of renewable energy in marine environments represents a viable solution and an important path for the future. These huge renewable energy resources in seas and oceans can be harvested, including wind, tide, and waves. Despite the initial difficulties related mostly to the elevated operational risks in the harsh marine environment, newly developed technologies are economically effective or promising. Simultaneously, many challenges remain to be faced. These are the main issues targeted by the present book, which is associated with the Special Issue of Energies Journal entitled “Renewable Energy in Marine Environment”. Papers on innovative technical developments, reviews, case studies, and analytics, as well as assessments, and papers from different disciplines that are relevant to the topic are included. From this perspective, we hope that the results presented are of interest to for scientists and those in related fields such as energy and marine environments, as well as for a wider audience.
Publisher: MDPI
ISBN: 3039285289
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
The effects of human-caused global warming are obvious, requiring new strategies and approaches. The concept of business-as-usual is now no longer beneficial. Extraction of renewable energy in marine environments represents a viable solution and an important path for the future. These huge renewable energy resources in seas and oceans can be harvested, including wind, tide, and waves. Despite the initial difficulties related mostly to the elevated operational risks in the harsh marine environment, newly developed technologies are economically effective or promising. Simultaneously, many challenges remain to be faced. These are the main issues targeted by the present book, which is associated with the Special Issue of Energies Journal entitled “Renewable Energy in Marine Environment”. Papers on innovative technical developments, reviews, case studies, and analytics, as well as assessments, and papers from different disciplines that are relevant to the topic are included. From this perspective, we hope that the results presented are of interest to for scientists and those in related fields such as energy and marine environments, as well as for a wider audience.
Modelling and Optimization of Wave Energy Converters
Author: Dezhi Ning
Publisher: CRC Press
ISBN: 1000629112
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Wave energy offers a promising renewable energy source, however, technologies converting wave energy into useful electricity face many design challenges. This guide presents numerical modelling and optimization methods for the development of wave energy converter technologies, from principles to applications. It covers the development status and perspectives of wave energy converter systems; the fundamental theories on wave power absorption; the modern wave energy converter concepts including oscillating bodies in single and multiple degree of freedom and oscillating water column technologies; and the relatively hitherto unexplored topic of wave energy harvesting farms. It can be used as a specialist student textbook as well as a reference book for the design of wave energy harvesting systems, across a broad range of disciplines, including renewable energy, marine engineering, infrastructure engineering, hydrodynamics, ocean science, and mechatronics engineering. The Open Access version of this book, available at www.routledge.com has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.
Publisher: CRC Press
ISBN: 1000629112
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Wave energy offers a promising renewable energy source, however, technologies converting wave energy into useful electricity face many design challenges. This guide presents numerical modelling and optimization methods for the development of wave energy converter technologies, from principles to applications. It covers the development status and perspectives of wave energy converter systems; the fundamental theories on wave power absorption; the modern wave energy converter concepts including oscillating bodies in single and multiple degree of freedom and oscillating water column technologies; and the relatively hitherto unexplored topic of wave energy harvesting farms. It can be used as a specialist student textbook as well as a reference book for the design of wave energy harvesting systems, across a broad range of disciplines, including renewable energy, marine engineering, infrastructure engineering, hydrodynamics, ocean science, and mechatronics engineering. The Open Access version of this book, available at www.routledge.com has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.