High Efficiency Shale Oil Recovery. Final Report, January 1, 1992--June 30, 1993

High Efficiency Shale Oil Recovery. Final Report, January 1, 1992--June 30, 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 25

Get Book Here

Book Description
The Adams Counter-current shale oil recovery process is an improved retorting technology enabling highly efficient oil recovery from oil shale. The high efficiency results primarily from the following facts: it (1) recovers the ash heat to preheat the feed ore; (2) burns and uses the coke energy and (3) operates without using hot ash recycling as a heat carrier. This latter feature is doubly important, contributing to high oil yield and to the generation of highly reactive coke which can be burned below 1000°F, avoiding the endothermal calcination of the mineral carbonates and helping to clean the ash of contaminants. This project demonstrates that oil shale can be retorted under the specified conditions and achieve the objectives of very high efficiency. The project accomplished the following: 51 quartz sand rotary kiln runs provided significant engineering data. A heat transfer value of 107 Btu/hr/ft2/°F was obtained at optimum RPM; eight oil shale samples were obtained and preliminary shakedown runs were made. Five of the samples were selected for kiln processing and twelve pyrolysis runs were made on the five different oil shales;average off recovery was 109% of Fisher Assay; retorted residue from all five samples was oxidized at approximately 1000°F. The ash from these runs was oxidized to varying extents, depending on the oil shale and oxidizing temperatures. While 1000°F is adequately hot to provide process heat from coke combustion for these ores, some Eastern oil shales, without mineral carbonates, may be oxidized at higher temperatures, perhaps 100--300 degrees hotter, to obtain a more complete oxidation and utilization of the coke.

High Efficiency Shale Oil Recovery. Final Report, January 1, 1992--June 30, 1993

High Efficiency Shale Oil Recovery. Final Report, January 1, 1992--June 30, 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 25

Get Book Here

Book Description
The Adams Counter-current shale oil recovery process is an improved retorting technology enabling highly efficient oil recovery from oil shale. The high efficiency results primarily from the following facts: it (1) recovers the ash heat to preheat the feed ore; (2) burns and uses the coke energy and (3) operates without using hot ash recycling as a heat carrier. This latter feature is doubly important, contributing to high oil yield and to the generation of highly reactive coke which can be burned below 1000°F, avoiding the endothermal calcination of the mineral carbonates and helping to clean the ash of contaminants. This project demonstrates that oil shale can be retorted under the specified conditions and achieve the objectives of very high efficiency. The project accomplished the following: 51 quartz sand rotary kiln runs provided significant engineering data. A heat transfer value of 107 Btu/hr/ft2/°F was obtained at optimum RPM; eight oil shale samples were obtained and preliminary shakedown runs were made. Five of the samples were selected for kiln processing and twelve pyrolysis runs were made on the five different oil shales;average off recovery was 109% of Fisher Assay; retorted residue from all five samples was oxidized at approximately 1000°F. The ash from these runs was oxidized to varying extents, depending on the oil shale and oxidizing temperatures. While 1000°F is adequately hot to provide process heat from coke combustion for these ores, some Eastern oil shales, without mineral carbonates, may be oxidized at higher temperatures, perhaps 100--300 degrees hotter, to obtain a more complete oxidation and utilization of the coke.

High Efficiency Shale Oil Recovery. Second Quarterly Report, April 1, 1992--June 30, 1992

High Efficiency Shale Oil Recovery. Second Quarterly Report, April 1, 1992--June 30, 1992 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a larger continuous process kiln. For example, similar conditions of heatup rate, oxidation of the residue and cool-down prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The second quarter agenda consisted of (a) kiln modifications; (b) sample preparation; and (c) Heat Transfer calibration runs (part of proposal task number 3 -- to be completed by the end of month 7).

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 782

Get Book Here

Book Description


High Efficiency Shale Oil Recovery. First Quarter Report, January 1, 1992--March 31, 1992

High Efficiency Shale Oil Recovery. First Quarter Report, January 1, 1992--March 31, 1992 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

High Efficiency Shale Oil Recovery. Fifth Quarterly Report, January 1, 1993--March 31, 1993

High Efficiency Shale Oil Recovery. Fifth Quarterly Report, January 1, 1993--March 31, 1993 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft2/°F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000°F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

High Efficiency Shale Oil Recovery. Third Quarterly Report, July 1, 1992--September 30, 1992

High Efficiency Shale Oil Recovery. Third Quarterly Report, July 1, 1992--September 30, 1992 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency is first being demonstrated at bench scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications, now completed, provide for a great improvement in the operation and make the data and analysis more exact. Last quarter we reported on equipment modifications and refurbishments which resulted in a sophisticated analytical rotary kiln. As we began operating the equipment this quarter, we observed that the software package was inadequate for our purpose and that the appropriate software could not be purchased as a shelf item. Therefore, we were required to modify the equipment interface and to write our own software. The quartz sand kiln calibration runs have been completed and the results are included in this report. Computer Interface: The computer interface was designed on CTR-05, DAS-08 and MUX-32 Boards from ComputerBoards Inc. We purchased a software program, Control EG by Quinn-Curtis, to use with these boards. As we began operating the equipment we realized that the software control was inadequately sensitive for our system as it would not provide time-proportioning output. This problem was resolved by writing our own software and providing time-proportioning duty cycles for the output to each of five heaters. We have entitled this program ''Kilntrol.'' It is included in the Appendix of this report.

Government Reports Annual Index

Government Reports Annual Index PDF Author:
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 1190

Get Book Here

Book Description
Sections 1-2. Keyword Index.--Section 3. Personal author index.--Section 4. Corporate author index.-- Section 5. Contract/grant number index, NTIS order/report number index 1-E.--Section 6. NTIS order/report number index F-Z.

High Efficiency Shale Oil Recovery. Fourth Quarterly Report, October 1, 1992--December 31, 1992

High Efficiency Shale Oil Recovery. Fourth Quarterly Report, October 1, 1992--December 31, 1992 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

Government Reports Announcements & Index

Government Reports Announcements & Index PDF Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 762

Get Book Here

Book Description


Fossil Energy Update

Fossil Energy Update PDF Author:
Publisher:
ISBN:
Category : Fossil fuels
Languages : en
Pages : 886

Get Book Here

Book Description