Author: Surya R. Kalidindi
Publisher: Elsevier
ISBN: 012410455X
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
Custom design, manufacture, and deployment of new high performance materials for advanced technologies is critically dependent on the availability of invertible, high fidelity, structure-property-processing (SPP) linkages. Establishing these linkages presents a major challenge because of the need to cover unimaginably large dimensional spaces. Hierarchical Materials Informatics addresses objective, computationally efficient, mining of large ensembles of experimental and modeling datasets to extract this core materials knowledge. Furthermore, it aims to organize and present this high value knowledge in highly accessible forms to end users engaged in product design and design for manufacturing efforts. As such, this emerging field has a pivotal role in realizing the goals outlined in current strategic national initiatives such as the Materials Genome Initiative (MGI) and the Advanced Manufacturing Partnership (AMP). This book presents the foundational elements of this new discipline as it relates to the design, development, and deployment of hierarchical materials critical to advanced technologies. - Addresses a critical gap in new materials research and development by presenting a rigorous statistical framework for the quantification of microstructure - Contains several case studies illustrating the use of modern data analytic tools on microstructure datasets (both experimental and modeling)
Hierarchical Materials Informatics
Author: Surya R. Kalidindi
Publisher: Elsevier
ISBN: 012410455X
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
Custom design, manufacture, and deployment of new high performance materials for advanced technologies is critically dependent on the availability of invertible, high fidelity, structure-property-processing (SPP) linkages. Establishing these linkages presents a major challenge because of the need to cover unimaginably large dimensional spaces. Hierarchical Materials Informatics addresses objective, computationally efficient, mining of large ensembles of experimental and modeling datasets to extract this core materials knowledge. Furthermore, it aims to organize and present this high value knowledge in highly accessible forms to end users engaged in product design and design for manufacturing efforts. As such, this emerging field has a pivotal role in realizing the goals outlined in current strategic national initiatives such as the Materials Genome Initiative (MGI) and the Advanced Manufacturing Partnership (AMP). This book presents the foundational elements of this new discipline as it relates to the design, development, and deployment of hierarchical materials critical to advanced technologies. - Addresses a critical gap in new materials research and development by presenting a rigorous statistical framework for the quantification of microstructure - Contains several case studies illustrating the use of modern data analytic tools on microstructure datasets (both experimental and modeling)
Publisher: Elsevier
ISBN: 012410455X
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
Custom design, manufacture, and deployment of new high performance materials for advanced technologies is critically dependent on the availability of invertible, high fidelity, structure-property-processing (SPP) linkages. Establishing these linkages presents a major challenge because of the need to cover unimaginably large dimensional spaces. Hierarchical Materials Informatics addresses objective, computationally efficient, mining of large ensembles of experimental and modeling datasets to extract this core materials knowledge. Furthermore, it aims to organize and present this high value knowledge in highly accessible forms to end users engaged in product design and design for manufacturing efforts. As such, this emerging field has a pivotal role in realizing the goals outlined in current strategic national initiatives such as the Materials Genome Initiative (MGI) and the Advanced Manufacturing Partnership (AMP). This book presents the foundational elements of this new discipline as it relates to the design, development, and deployment of hierarchical materials critical to advanced technologies. - Addresses a critical gap in new materials research and development by presenting a rigorous statistical framework for the quantification of microstructure - Contains several case studies illustrating the use of modern data analytic tools on microstructure datasets (both experimental and modeling)
Metallurgy and Design of Alloys with Hierarchical Microstructures
Author: Krishnan K. Sankaran
Publisher: Elsevier
ISBN: 0128120258
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service. The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties—such as strength, corrosion resistance, durability and damage tolerance in multi-component materials—used for critical structural applications. - Discusses the science behind the properties and performance of advanced metallic materials - Provides for the efficient design of materials and processes to satisfy targeted performance in materials and structures - Enables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work
Publisher: Elsevier
ISBN: 0128120258
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Metallurgy and Design of Alloys with Hierarchical Microstructures covers the fundamentals of processing-microstructure-property relationships and how multiple properties are balanced and optimized in materials with hierarchical microstructures widely used in critical applications. The discussion is based principally on metallic materials used in aircraft structures; however, because they have sufficiently diverse microstructures, the underlying principles can easily be extended to other materials systems. With the increasing microstructural complexity of structural materials, it is important for students, academic researchers and practicing engineers to possess the knowledge of how materials are optimized and how they will behave in service. The book integrates aspects of computational materials science, physical metallurgy, alloy design, process design, and structure-properties relationships, in a manner not done before. It fills a knowledge gap in the interrelationships of multiple microstructural and deformation mechanisms by applying the concepts and tools of designing microstructures for achieving combinations of engineering properties—such as strength, corrosion resistance, durability and damage tolerance in multi-component materials—used for critical structural applications. - Discusses the science behind the properties and performance of advanced metallic materials - Provides for the efficient design of materials and processes to satisfy targeted performance in materials and structures - Enables the selection and development of new alloys for specific applications based upon evaluation of their microstructure as illustrated in this work
Horizons in Materials
Author: Nicola Maria Pugno
Publisher: Frontiers Media SA
ISBN: 2889761630
Category : Technology & Engineering
Languages : en
Pages : 189
Book Description
The Frontiers in Materials Editorial Office team are delighted to present the “Horizons in Materials” article collection, showcasing high-impact, authoritative, and accessible Review articles covering important topics at the forefront of the materials science and engineering field. All contributing authors were nominated by the Chief Editors and Editorial Office in recognition of their prominence and influence in their respective fields. The cutting-edge work presented in this article collection highlights the diversity of research performed across the entire breadth of the materials science and engineering field and reflects on the latest advances in theory, experiment, and methodology with applications to compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Materials Chief Editors and Editorial Office team would like to thank each researcher who contributed their work to this collection. We are excited to see each article gain the deserved visibility and traction within the wider community, ensuring the collection’s truly global impact and success. Emily Young Journal Manager
Publisher: Frontiers Media SA
ISBN: 2889761630
Category : Technology & Engineering
Languages : en
Pages : 189
Book Description
The Frontiers in Materials Editorial Office team are delighted to present the “Horizons in Materials” article collection, showcasing high-impact, authoritative, and accessible Review articles covering important topics at the forefront of the materials science and engineering field. All contributing authors were nominated by the Chief Editors and Editorial Office in recognition of their prominence and influence in their respective fields. The cutting-edge work presented in this article collection highlights the diversity of research performed across the entire breadth of the materials science and engineering field and reflects on the latest advances in theory, experiment, and methodology with applications to compelling problems. This Editorial features the corresponding author(s) of each paper published within this important collection, ordered by section alphabetically, highlighting them as the great researchers of the future. The Frontiers in Materials Chief Editors and Editorial Office team would like to thank each researcher who contributed their work to this collection. We are excited to see each article gain the deserved visibility and traction within the wider community, ensuring the collection’s truly global impact and success. Emily Young Journal Manager
Homogenization and materials design of mechanical properties of textured materials based on zeroth-, first- and second-order bounds of linear behavior
Author: Lobos Fernández, Mauricio
Publisher: KIT Scientific Publishing
ISBN: 3731507706
Category : Materials
Languages : en
Pages : 224
Book Description
This work approaches the fields of homogenization and of materials design for the linear and nonlinear mechanical properties with prescribed properties-profile. The set of achievable properties is bounded by the zeroth-order bounds (which are material specific), the first-order bounds (containing volume fractions of the phases) and the second-order Hashin-Shtrikman bounds with eigenfields in terms of tensorial texture coefficients for arbitrarily anisotropic textured materials.
Publisher: KIT Scientific Publishing
ISBN: 3731507706
Category : Materials
Languages : en
Pages : 224
Book Description
This work approaches the fields of homogenization and of materials design for the linear and nonlinear mechanical properties with prescribed properties-profile. The set of achievable properties is bounded by the zeroth-order bounds (which are material specific), the first-order bounds (containing volume fractions of the phases) and the second-order Hashin-Shtrikman bounds with eigenfields in terms of tensorial texture coefficients for arbitrarily anisotropic textured materials.
Materials Informatics and Catalysts Informatics
Author: Keisuke Takahashi
Publisher: Springer Nature
ISBN: 9819702178
Category :
Languages : en
Pages : 301
Book Description
Publisher: Springer Nature
ISBN: 9819702178
Category :
Languages : en
Pages : 301
Book Description
Proceedings of the 3rd World Congress on Integrated Computational Materials Engineering (ICME)
Author: Warren Poole
Publisher: John Wiley & Sons
ISBN: 111913952X
Category : Technology & Engineering
Languages : en
Pages : 394
Book Description
This book represents a collection of papers presented at the 3rd World Congress on Integrated Computational Materials Engineering (ICME), a specialty conference organized by The Minerals, Metals & Materials Society (TMS), and held in Colorado Springs, Colorado, May 31 - June 4, 2015. This meeting convened ICME stakeholders to examine topics relevant to the global advancement of ICME as an engineering discipline. The 42 papers presented in these proceedings are divided into six sections: (1) ICME Applications; (2) ICME Building Blocks; (3) ICME Success Stories and Applications (4) Integration of ICME Building Blocks: Multi-scale Modeling; (5) Modeling, Data and Infrastructure Tools, and (6) Process Optimization. The papers represent a cross section of the presentations and discussions from the conference. These papers are intended to further the global implementation of ICME, broaden the variety of applications to which ICME is applied, and ultimately help industry design and produce new materials more efficiently and effectively.
Publisher: John Wiley & Sons
ISBN: 111913952X
Category : Technology & Engineering
Languages : en
Pages : 394
Book Description
This book represents a collection of papers presented at the 3rd World Congress on Integrated Computational Materials Engineering (ICME), a specialty conference organized by The Minerals, Metals & Materials Society (TMS), and held in Colorado Springs, Colorado, May 31 - June 4, 2015. This meeting convened ICME stakeholders to examine topics relevant to the global advancement of ICME as an engineering discipline. The 42 papers presented in these proceedings are divided into six sections: (1) ICME Applications; (2) ICME Building Blocks; (3) ICME Success Stories and Applications (4) Integration of ICME Building Blocks: Multi-scale Modeling; (5) Modeling, Data and Infrastructure Tools, and (6) Process Optimization. The papers represent a cross section of the presentations and discussions from the conference. These papers are intended to further the global implementation of ICME, broaden the variety of applications to which ICME is applied, and ultimately help industry design and produce new materials more efficiently and effectively.
Materials Nanoarchitectonics
Author: Katsuhiko Ariga
Publisher: Elsevier
ISBN: 0323994733
Category : Technology & Engineering
Languages : en
Pages : 648
Book Description
Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures
Publisher: Elsevier
ISBN: 0323994733
Category : Technology & Engineering
Languages : en
Pages : 648
Book Description
Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures
Scientific Modeling and Simulations
Author: Sidney Yip
Publisher: Springer Science & Business Media
ISBN: 1402097417
Category : Science
Languages : en
Pages : 396
Book Description
Although computational modeling and simulation of material deformation was initiated with the study of structurally simple materials and inert environments, there is an increasing demand for predictive simulation of more realistic material structure and physical conditions. In particular, it is recognized that applied mechanical force can plausibly alter chemical reactions inside materials or at material interfaces, though the fundamental reasons for this chemomechanical coupling are studied in a material-speci c manner. Atomistic-level s- ulations can provide insight into the unit processes that facilitate kinetic reactions within complex materials, but the typical nanosecond timescales of such simulations are in contrast to the second-scale to hour-scale timescales of experimentally accessible or technologically relevant timescales. Further, in complex materials these key unit processes are “rare events” due to the high energy barriers associated with those processes. Examples of such rare events include unbinding between two proteins that tether biological cells to extracellular materials [1], unfolding of complex polymers, stiffness and bond breaking in amorphous glass bers and gels [2], and diffusive hops of point defects within crystalline alloys [3].
Publisher: Springer Science & Business Media
ISBN: 1402097417
Category : Science
Languages : en
Pages : 396
Book Description
Although computational modeling and simulation of material deformation was initiated with the study of structurally simple materials and inert environments, there is an increasing demand for predictive simulation of more realistic material structure and physical conditions. In particular, it is recognized that applied mechanical force can plausibly alter chemical reactions inside materials or at material interfaces, though the fundamental reasons for this chemomechanical coupling are studied in a material-speci c manner. Atomistic-level s- ulations can provide insight into the unit processes that facilitate kinetic reactions within complex materials, but the typical nanosecond timescales of such simulations are in contrast to the second-scale to hour-scale timescales of experimentally accessible or technologically relevant timescales. Further, in complex materials these key unit processes are “rare events” due to the high energy barriers associated with those processes. Examples of such rare events include unbinding between two proteins that tether biological cells to extracellular materials [1], unfolding of complex polymers, stiffness and bond breaking in amorphous glass bers and gels [2], and diffusive hops of point defects within crystalline alloys [3].
Architecting Robust Co-Design of Materials, Products, and Manufacturing Processes
Author: Anand Balu Nellippallil
Publisher: Springer Nature
ISBN: 3030453243
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
This book explores systems-based, co-design, introducing a “Decision-Based, Co-Design” (DBCD) approach for the co-design of materials, products, and processes. In recent years there have been significant advances in modeling and simulation of material behavior, from the smallest atomic scale to the macro scale. However, the uncertainties associated with these approaches and models across different scales need to be addressed to enable decision-making resulting in designs that are robust, that is, relatively insensitive to uncertainties. An approach that facilitates co-design is needed across material, product design and manufacturing processes. This book describes a cloud-based platform to support decisions in the design of engineered systems (CB-PDSIDES), which feature an architecture that promotes co-design through the servitization of decision-making, knowledge capture and use templates that allow previous solutions to be reused. Placing the platform in the cloud aids mass collaboration and open innovation. A valuable reference resource reference on all areas related to the design of materials, products and processes, the book appeals to material scientists, design engineers and all those involved in the emerging interdisciplinary field of integrated computational materials engineering (ICME).
Publisher: Springer Nature
ISBN: 3030453243
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
This book explores systems-based, co-design, introducing a “Decision-Based, Co-Design” (DBCD) approach for the co-design of materials, products, and processes. In recent years there have been significant advances in modeling and simulation of material behavior, from the smallest atomic scale to the macro scale. However, the uncertainties associated with these approaches and models across different scales need to be addressed to enable decision-making resulting in designs that are robust, that is, relatively insensitive to uncertainties. An approach that facilitates co-design is needed across material, product design and manufacturing processes. This book describes a cloud-based platform to support decisions in the design of engineered systems (CB-PDSIDES), which feature an architecture that promotes co-design through the servitization of decision-making, knowledge capture and use templates that allow previous solutions to be reused. Placing the platform in the cloud aids mass collaboration and open innovation. A valuable reference resource reference on all areas related to the design of materials, products and processes, the book appeals to material scientists, design engineers and all those involved in the emerging interdisciplinary field of integrated computational materials engineering (ICME).
Virtual Materials Design
Author: Norbert Huber
Publisher: Frontiers Media SA
ISBN: 2889766772
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
Publisher: Frontiers Media SA
ISBN: 2889766772
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description