Author: Abbass, Hussein A.
Publisher: IGI Global
ISBN: 1591400171
Category : Computers
Languages : en
Pages : 300
Book Description
With the large amount of data stored by many organizations, capitalists have observed that this information is an intangible asset. Unfortunately, handling large databases is a very complex process and traditional learning techniques are expensive to use. Heuristic techniques provide much help in this arena, although little is known about heuristic techniques. Heuristic and Optimization for Knowledge Discovery addresses the foundation of this topic, as well as its practical uses, and aims to fill in the gap that exists in current literature.
Heuristic and Optimization for Knowledge Discovery
Author: Abbass, Hussein A.
Publisher: IGI Global
ISBN: 1591400171
Category : Computers
Languages : en
Pages : 300
Book Description
With the large amount of data stored by many organizations, capitalists have observed that this information is an intangible asset. Unfortunately, handling large databases is a very complex process and traditional learning techniques are expensive to use. Heuristic techniques provide much help in this arena, although little is known about heuristic techniques. Heuristic and Optimization for Knowledge Discovery addresses the foundation of this topic, as well as its practical uses, and aims to fill in the gap that exists in current literature.
Publisher: IGI Global
ISBN: 1591400171
Category : Computers
Languages : en
Pages : 300
Book Description
With the large amount of data stored by many organizations, capitalists have observed that this information is an intangible asset. Unfortunately, handling large databases is a very complex process and traditional learning techniques are expensive to use. Heuristic techniques provide much help in this arena, although little is known about heuristic techniques. Heuristic and Optimization for Knowledge Discovery addresses the foundation of this topic, as well as its practical uses, and aims to fill in the gap that exists in current literature.
Heuristic and Optimization for Knowledge Discovery
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Data Mining: A Heuristic Approach
Author: Abbass, Hussein A.
Publisher: IGI Global
ISBN: 1591400112
Category : Computers
Languages : en
Pages : 310
Book Description
Real life problems are known to be messy, dynamic and multi-objective, and involve high levels of uncertainty and constraints. Because traditional problem-solving methods are no longer capable of handling this level of complexity, heuristic search methods have attracted increasing attention in recent years for solving such problems. Inspired by nature, biology, statistical mechanics, physics and neuroscience, heuristics techniques are used to solve many problems where traditional methods have failed. Data Mining: A Heuristic Approach will be a repository for the applications of these techniques in the area of data mining.
Publisher: IGI Global
ISBN: 1591400112
Category : Computers
Languages : en
Pages : 310
Book Description
Real life problems are known to be messy, dynamic and multi-objective, and involve high levels of uncertainty and constraints. Because traditional problem-solving methods are no longer capable of handling this level of complexity, heuristic search methods have attracted increasing attention in recent years for solving such problems. Inspired by nature, biology, statistical mechanics, physics and neuroscience, heuristics techniques are used to solve many problems where traditional methods have failed. Data Mining: A Heuristic Approach will be a repository for the applications of these techniques in the area of data mining.
Data-Driven Optimization and Knowledge Discovery for an Enterprise Information System
Author: Qing Duan
Publisher: Springer
ISBN: 3319187384
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
This book provides a comprehensive set of optimization and prediction techniques for an enterprise information system. Readers with a background in operations research, system engineering, statistics, or data analytics can use this book as a reference to derive insight from data and use this knowledge as guidance for production management. The authors identify the key challenges in enterprise information management and present results that have emerged from leading-edge research in this domain. Coverage includes topics ranging from task scheduling and resource allocation, to workflow optimization, process time and status prediction, order admission policies optimization, and enterprise service-level performance analysis and prediction. With its emphasis on the above topics, this book provides an in-depth look at enterprise information management solutions that are needed for greater automation and reconfigurability-based fault tolerance, as well as to obtain data-driven recommendations for effective decision-making.
Publisher: Springer
ISBN: 3319187384
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
This book provides a comprehensive set of optimization and prediction techniques for an enterprise information system. Readers with a background in operations research, system engineering, statistics, or data analytics can use this book as a reference to derive insight from data and use this knowledge as guidance for production management. The authors identify the key challenges in enterprise information management and present results that have emerged from leading-edge research in this domain. Coverage includes topics ranging from task scheduling and resource allocation, to workflow optimization, process time and status prediction, order admission policies optimization, and enterprise service-level performance analysis and prediction. With its emphasis on the above topics, this book provides an in-depth look at enterprise information management solutions that are needed for greater automation and reconfigurability-based fault tolerance, as well as to obtain data-driven recommendations for effective decision-making.
Knowledge Discovery with Support Vector Machines
Author: Lutz H. Hamel
Publisher: John Wiley & Sons
ISBN: 1118211030
Category : Computers
Languages : en
Pages : 211
Book Description
An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.
Publisher: John Wiley & Sons
ISBN: 1118211030
Category : Computers
Languages : en
Pages : 211
Book Description
An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.
Optimizing Data and New Methods for Efficient Knowledge Discovery and Information Resources Management: Emerging Research and Opportunities
Author: Swayze, Susan
Publisher: IGI Global
ISBN: 1799822370
Category : Computers
Languages : en
Pages : 198
Book Description
The fast-paced world created by the accessibility of consumer information through internet-generated data requires improved information-management platforms. The continuous evaluation and evolution of these systems facilitate enhanced data reference and output. Optimizing Data and New Methods for Efficient Knowledge Discovery and Information Resources Management is a critical research publication that provides insight into the varied and rapidly changing fields of knowledge discovery and information resource management. Highlighting a range of topics such as datamining, artificial intelligence, and risk assessment, this book is essential for librarians, academicians, policymakers, information managers, professionals, and researchers in fields that include artificial intelligence, knowledge discovery, data visualization, big data, and information resources management.
Publisher: IGI Global
ISBN: 1799822370
Category : Computers
Languages : en
Pages : 198
Book Description
The fast-paced world created by the accessibility of consumer information through internet-generated data requires improved information-management platforms. The continuous evaluation and evolution of these systems facilitate enhanced data reference and output. Optimizing Data and New Methods for Efficient Knowledge Discovery and Information Resources Management is a critical research publication that provides insight into the varied and rapidly changing fields of knowledge discovery and information resource management. Highlighting a range of topics such as datamining, artificial intelligence, and risk assessment, this book is essential for librarians, academicians, policymakers, information managers, professionals, and researchers in fields that include artificial intelligence, knowledge discovery, data visualization, big data, and information resources management.
Soft Computing
Author: Mangey Ram
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110628619
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
Soft computing is used where a complex problem is not adequately specified for the use of conventional math and computer techniques. Soft computing has numerous real-world applications in domestic, commercial and industrial situations. This book elaborates on the most recent applications in various fields of engineering.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110628619
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
Soft computing is used where a complex problem is not adequately specified for the use of conventional math and computer techniques. Soft computing has numerous real-world applications in domestic, commercial and industrial situations. This book elaborates on the most recent applications in various fields of engineering.
Machine Learning and Knowledge Discovery in Databases: Applied Data Science and Demo Track
Author: Gianmarco De Francisci Morales
Publisher: Springer Nature
ISBN: 3031434277
Category :
Languages : en
Pages : 745
Book Description
Publisher: Springer Nature
ISBN: 3031434277
Category :
Languages : en
Pages : 745
Book Description
Machine Learning and Knowledge Discovery in Databases
Author: Peter A. Flach
Publisher: Springer
ISBN: 3642334865
Category : Computers
Languages : en
Pages : 891
Book Description
This two-volume set LNAI 7523 and LNAI 7524 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2012, held in Bristol, UK, in September 2012. The 105 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 443 submissions. The final sections of the proceedings are devoted to Demo and Nectar papers. The Demo track includes 10 papers (from 19 submissions) and the Nectar track includes 4 papers (from 14 submissions). The papers grouped in topical sections on association rules and frequent patterns; Bayesian learning and graphical models; classification; dimensionality reduction, feature selection and extraction; distance-based methods and kernels; ensemble methods; graph and tree mining; large-scale, distributed and parallel mining and learning; multi-relational mining and learning; multi-task learning; natural language processing; online learning and data streams; privacy and security; rankings and recommendations; reinforcement learning and planning; rule mining and subgroup discovery; semi-supervised and transductive learning; sensor data; sequence and string mining; social network mining; spatial and geographical data mining; statistical methods and evaluation; time series and temporal data mining; and transfer learning.
Publisher: Springer
ISBN: 3642334865
Category : Computers
Languages : en
Pages : 891
Book Description
This two-volume set LNAI 7523 and LNAI 7524 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2012, held in Bristol, UK, in September 2012. The 105 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 443 submissions. The final sections of the proceedings are devoted to Demo and Nectar papers. The Demo track includes 10 papers (from 19 submissions) and the Nectar track includes 4 papers (from 14 submissions). The papers grouped in topical sections on association rules and frequent patterns; Bayesian learning and graphical models; classification; dimensionality reduction, feature selection and extraction; distance-based methods and kernels; ensemble methods; graph and tree mining; large-scale, distributed and parallel mining and learning; multi-relational mining and learning; multi-task learning; natural language processing; online learning and data streams; privacy and security; rankings and recommendations; reinforcement learning and planning; rule mining and subgroup discovery; semi-supervised and transductive learning; sensor data; sequence and string mining; social network mining; spatial and geographical data mining; statistical methods and evaluation; time series and temporal data mining; and transfer learning.
Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques
Author: Evangelos Triantaphyllou
Publisher: Springer Science & Business Media
ISBN: 0387342966
Category : Computers
Languages : en
Pages : 784
Book Description
This book outlines the core theory and practice of data mining and knowledge discovery (DM & KD) examining theoretical foundations for various methods, and presenting an array of examples, many drawn from real-life applications. Most theoretical developments are accompanied by extensive empirical analysis, offering a deep insight into both theoretical and practical aspects of the subject. The book presents the combined research experiences of 40 expert contributors of world renown.
Publisher: Springer Science & Business Media
ISBN: 0387342966
Category : Computers
Languages : en
Pages : 784
Book Description
This book outlines the core theory and practice of data mining and knowledge discovery (DM & KD) examining theoretical foundations for various methods, and presenting an array of examples, many drawn from real-life applications. Most theoretical developments are accompanied by extensive empirical analysis, offering a deep insight into both theoretical and practical aspects of the subject. The book presents the combined research experiences of 40 expert contributors of world renown.