Heights in Diophantine Geometry

Heights in Diophantine Geometry PDF Author: Enrico Bombieri
Publisher: Cambridge University Press
ISBN: 9780521712293
Category : Mathematics
Languages : en
Pages : 676

Get Book Here

Book Description
This monograph is a bridge between the classical theory and modern approach via arithmetic geometry.

Diophantine Geometry

Diophantine Geometry PDF Author: Marc Hindry
Publisher: Springer Science & Business Media
ISBN: 1461212103
Category : Mathematics
Languages : en
Pages : 574

Get Book Here

Book Description
This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.

Fundamentals of Diophantine Geometry

Fundamentals of Diophantine Geometry PDF Author: S. Lang
Publisher: Springer Science & Business Media
ISBN: 1475718101
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is :;;; 2, then there is only a finite number of rational points.

The Mordell Conjecture

The Mordell Conjecture PDF Author: Hideaki Ikoma
Publisher: Cambridge University Press
ISBN: 1108845959
Category : Mathematics
Languages : en
Pages : 179

Get Book Here

Book Description
This book provides a self-contained proof of the Mordell conjecture (Faltings's theorem) and a concise introduction to Diophantine geometry.

Arakelov Geometry and Diophantine Applications

Arakelov Geometry and Diophantine Applications PDF Author: Emmanuel Peyre
Publisher: Springer Nature
ISBN: 3030575594
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.

Point-Counting and the Zilber–Pink Conjecture

Point-Counting and the Zilber–Pink Conjecture PDF Author: Jonathan Pila
Publisher: Cambridge University Press
ISBN: 1009301926
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
Point-counting results for sets in real Euclidean space have found remarkable applications to diophantine geometry, enabling significant progress on the André–Oort and Zilber–Pink conjectures. The results combine ideas close to transcendence theory with the strong tameness properties of sets that are definable in an o-minimal structure, and thus the material treated connects ideas in model theory, transcendence theory, and arithmetic. This book describes the counting results and their applications along with their model-theoretic and transcendence connections. Core results are presented in detail to demonstrate the flexibility of the method, while wider developments are described in order to illustrate the breadth of the diophantine conjectures and to highlight key arithmetical ingredients. The underlying ideas are elementary and most of the book can be read with only a basic familiarity with number theory and complex algebraic geometry. It serves as an introduction for postgraduate students and researchers to the main ideas, results, problems, and themes of current research in this area.

Diophantine Equations Over Function Fields

Diophantine Equations Over Function Fields PDF Author: R. C. Mason
Publisher: Cambridge University Press
ISBN: 9780521269834
Category : Mathematics
Languages : en
Pages : 142

Get Book Here

Book Description
A self-contained account of a new approach to the subject.

Logarithmic Forms and Diophantine Geometry

Logarithmic Forms and Diophantine Geometry PDF Author: A. Baker
Publisher: Cambridge University Press
ISBN: 1139468871
Category : Mathematics
Languages : en
Pages :

Get Book Here

Book Description
There is now much interplay between studies on logarithmic forms and deep aspects of arithmetic algebraic geometry. New light has been shed, for instance, on the famous conjectures of Tate and Shafarevich relating to abelian varieties and the associated celebrated discoveries of Faltings establishing the Mordell conjecture. This book gives an account of the theory of linear forms in the logarithms of algebraic numbers with special emphasis on the important developments of the past twenty-five years. The first part covers basic material in transcendental number theory but with a modern perspective. The remainder assumes some background in Lie algebras and group varieties, and covers, in some instances for the first time in book form, several advanced topics. The final chapter summarises other aspects of Diophantine geometry including hypergeometric theory and the André-Oort conjecture. A comprehensive bibliography rounds off this definitive survey of effective methods in Diophantine geometry.

Diophantine Approximations and Diophantine Equations

Diophantine Approximations and Diophantine Equations PDF Author: Wolfgang M. Schmidt
Publisher: Springer
ISBN: 3540473742
Category : Mathematics
Languages : en
Pages : 224

Get Book Here

Book Description
"This book by a leading researcher and masterly expositor of the subject studies diophantine approximations to algebraic numbers and their applications to diophantine equations. The methods are classical, and the results stressed can be obtained without much background in algebraic geometry. In particular, Thue equations, norm form equations and S-unit equations, with emphasis on recent explicit bounds on the number of solutions, are included. The book will be useful for graduate students and researchers." (L'Enseignement Mathematique) "The rich Bibliography includes more than hundred references. The book is easy to read, it may be a useful piece of reading not only for experts but for students as well." Acta Scientiarum Mathematicarum

Lectures on Arakelov Geometry

Lectures on Arakelov Geometry PDF Author: C. Soulé
Publisher: Cambridge University Press
ISBN: 9780521477093
Category : Mathematics
Languages : en
Pages : 190

Get Book Here

Book Description
An account for graduate students of this new technique in diophantine geometry; includes account of higher dimensional theory.