Author: Luisa F. Cabeza
Publisher: Elsevier
ISBN: 1782420967
Category : Technology & Engineering
Languages : en
Pages : 623
Book Description
Thermal energy storage (TES) technologies store thermal energy (both heat and cold) for later use as required, rather than at the time of production. They are therefore important counterparts to various intermittent renewable energy generation methods and also provide a way of valorising waste process heat and reducing the energy demand of buildings. This book provides an authoritative overview of this key area. Part one reviews sensible heat storage technologies. Part two covers latent and thermochemical heat storage respectively. The final section addresses applications in heating and energy systems. - Reviews sensible heat storage technologies, including the use of water, molten salts, concrete and boreholes - Describes latent heat storage systems and thermochemical heat storage - Includes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry
Advances in Thermal Energy Storage Systems
Author: Luisa F. Cabeza
Publisher: Elsevier
ISBN: 1782420967
Category : Technology & Engineering
Languages : en
Pages : 623
Book Description
Thermal energy storage (TES) technologies store thermal energy (both heat and cold) for later use as required, rather than at the time of production. They are therefore important counterparts to various intermittent renewable energy generation methods and also provide a way of valorising waste process heat and reducing the energy demand of buildings. This book provides an authoritative overview of this key area. Part one reviews sensible heat storage technologies. Part two covers latent and thermochemical heat storage respectively. The final section addresses applications in heating and energy systems. - Reviews sensible heat storage technologies, including the use of water, molten salts, concrete and boreholes - Describes latent heat storage systems and thermochemical heat storage - Includes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry
Publisher: Elsevier
ISBN: 1782420967
Category : Technology & Engineering
Languages : en
Pages : 623
Book Description
Thermal energy storage (TES) technologies store thermal energy (both heat and cold) for later use as required, rather than at the time of production. They are therefore important counterparts to various intermittent renewable energy generation methods and also provide a way of valorising waste process heat and reducing the energy demand of buildings. This book provides an authoritative overview of this key area. Part one reviews sensible heat storage technologies. Part two covers latent and thermochemical heat storage respectively. The final section addresses applications in heating and energy systems. - Reviews sensible heat storage technologies, including the use of water, molten salts, concrete and boreholes - Describes latent heat storage systems and thermochemical heat storage - Includes information on the monitoring and control of thermal energy storage systems, and considers their applications in residential buildings, power plants and industry
Heat Storage: A Unique Solution For Energy Systems
Author: Ibrahim Dincer
Publisher: Springer
ISBN: 3319918931
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
This book covers emerging energy storage technologies and material characterization methods along with various systems and applications in building, power generation systems and thermal management. The authors present options available for reducing the net energy consumption for heating/cooling, improving the thermal properties of the phase change materials and optimization methods for heat storage embedded multi-generation systems. An in-depth discussion on the natural convection-driven phase change is included. The book also discusses main energy storage options for thermal management practices in photovoltaics and phase change material applications that aim passive thermal control. This book will appeal to researchers and professionals in the fields of mechanical engineering, chemical engineering, electrical engineering, renewable energy, and thermodynamics. It can also be used as an ancillary text in upper-level undergraduate courses and graduate courses in these fields.
Publisher: Springer
ISBN: 3319918931
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
This book covers emerging energy storage technologies and material characterization methods along with various systems and applications in building, power generation systems and thermal management. The authors present options available for reducing the net energy consumption for heating/cooling, improving the thermal properties of the phase change materials and optimization methods for heat storage embedded multi-generation systems. An in-depth discussion on the natural convection-driven phase change is included. The book also discusses main energy storage options for thermal management practices in photovoltaics and phase change material applications that aim passive thermal control. This book will appeal to researchers and professionals in the fields of mechanical engineering, chemical engineering, electrical engineering, renewable energy, and thermodynamics. It can also be used as an ancillary text in upper-level undergraduate courses and graduate courses in these fields.
Heat and cold storage with PCM
Author: Harald Mehling
Publisher: Springer Science & Business Media
ISBN: 354068557X
Category : Science
Languages : en
Pages : 316
Book Description
The years 2006 and 2007 mark a dramatic change of peoples view regarding c- mate change and energy consumption. The new IPCC report makes clear that - mankind plays a dominant role on climate change due to CO emissions from en- 2 ergy consumption, and that a significant reduction in CO emissions is necessary 2 within decades. At the same time, the supply of fossil energy sources like coal, oil, and natural gas becomes less reliable. In spring 2008, the oil price rose beyond 100 $/barrel for the first time in history. It is commonly accepted today that we have to reduce the use of fossil fuels to cut down the dependency on the supply countries and to reduce CO emissions. The use of renewable energy sources and 2 increased energy efficiency are the main strategies to achieve this goal. In both strategies, heat and cold storage will play an important role. People use energy in different forms, as heat, as mechanical energy, and as light. With the discovery of fire, humankind was the first time able to supply heat and light when needed. About 2000 years ago, the Romans started to use ceramic tiles to store heat in under floor heating systems. Even when the fire was out, the room stayed warm. Since ancient times, people also know how to cool food with ice as cold storage.
Publisher: Springer Science & Business Media
ISBN: 354068557X
Category : Science
Languages : en
Pages : 316
Book Description
The years 2006 and 2007 mark a dramatic change of peoples view regarding c- mate change and energy consumption. The new IPCC report makes clear that - mankind plays a dominant role on climate change due to CO emissions from en- 2 ergy consumption, and that a significant reduction in CO emissions is necessary 2 within decades. At the same time, the supply of fossil energy sources like coal, oil, and natural gas becomes less reliable. In spring 2008, the oil price rose beyond 100 $/barrel for the first time in history. It is commonly accepted today that we have to reduce the use of fossil fuels to cut down the dependency on the supply countries and to reduce CO emissions. The use of renewable energy sources and 2 increased energy efficiency are the main strategies to achieve this goal. In both strategies, heat and cold storage will play an important role. People use energy in different forms, as heat, as mechanical energy, and as light. With the discovery of fire, humankind was the first time able to supply heat and light when needed. About 2000 years ago, the Romans started to use ceramic tiles to store heat in under floor heating systems. Even when the fire was out, the room stayed warm. Since ancient times, people also know how to cool food with ice as cold storage.
Thermal Energy Storage
Author: Hafiz Muhammad Ali
Publisher: Springer Nature
ISBN: 9811611319
Category : Technology & Engineering
Languages : en
Pages : 124
Book Description
This book covers various aspects of thermal energy storage. It looks at storage methods for thermal energy and reviews the various materials that store thermal energy and goes on to propose advanced materials that store energy better than conventional materials. The book also presents various thermophysical properties of advanced materials and the role of thermal energy storage in different applications such as buildings, solar energy, seawater desalination and cooling devices. The advanced energy storage materials have massive impact on heat transfer as compared to conventional energy storage materials. A concise discussion regarding current status, leading groups, journals and the countries working on advanced energy storage materials has also been provided. This book is useful to researchers, professionals and policymakers alike.
Publisher: Springer Nature
ISBN: 9811611319
Category : Technology & Engineering
Languages : en
Pages : 124
Book Description
This book covers various aspects of thermal energy storage. It looks at storage methods for thermal energy and reviews the various materials that store thermal energy and goes on to propose advanced materials that store energy better than conventional materials. The book also presents various thermophysical properties of advanced materials and the role of thermal energy storage in different applications such as buildings, solar energy, seawater desalination and cooling devices. The advanced energy storage materials have massive impact on heat transfer as compared to conventional energy storage materials. A concise discussion regarding current status, leading groups, journals and the countries working on advanced energy storage materials has also been provided. This book is useful to researchers, professionals and policymakers alike.
Solar Thermal Energy Storage
Author: H.P. Garg
Publisher: Springer Science & Business Media
ISBN: 9400953011
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Energy Storage not only plays an important role in conservinq the energy but also improves the performance and reliability of a wide range of energy systems. Energy storagp. leads to saving of premium fuels and makes the system morA cost effective by reducing the wastage of energy. In most systems there is a mismatch between the energy supply and energy demand. The energy storage can even out this imbalance and thereby help in savings of capital costs. Enerqy storage is all the more important where the enerqy source is intermittent such as Solar Energy. The use of jntermittent energy sources is likely to grow. If more and more solar energy is to be used for domestic and industrial applications then energy storage is very crucial. If no storage is used in solar energy systems then the major part of the energy demand will be met by the back-up or auxiliary energy and therefore the so called annual solar load fract]on will be very low. In case of solar energy, both short term and long term energy storage systems can be used whjch can adjust the phase difference between solar energy supply and energy demand and can match seasonal demands to the solar availability respectively. Thermal energy storage can lead to capital cost savings, fuel savjngs, and fuel substitution in many application areas. Developing an optimum thermal storaqe system is as important an area of research as developinq an alternative source of energy.
Publisher: Springer Science & Business Media
ISBN: 9400953011
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Energy Storage not only plays an important role in conservinq the energy but also improves the performance and reliability of a wide range of energy systems. Energy storagp. leads to saving of premium fuels and makes the system morA cost effective by reducing the wastage of energy. In most systems there is a mismatch between the energy supply and energy demand. The energy storage can even out this imbalance and thereby help in savings of capital costs. Enerqy storage is all the more important where the enerqy source is intermittent such as Solar Energy. The use of jntermittent energy sources is likely to grow. If more and more solar energy is to be used for domestic and industrial applications then energy storage is very crucial. If no storage is used in solar energy systems then the major part of the energy demand will be met by the back-up or auxiliary energy and therefore the so called annual solar load fract]on will be very low. In case of solar energy, both short term and long term energy storage systems can be used whjch can adjust the phase difference between solar energy supply and energy demand and can match seasonal demands to the solar availability respectively. Thermal energy storage can lead to capital cost savings, fuel savjngs, and fuel substitution in many application areas. Developing an optimum thermal storaqe system is as important an area of research as developinq an alternative source of energy.
Heat Storage Systems for Buildings
Author: Ibrahim Dincer
Publisher: Elsevier
ISBN: 0128236264
Category : Science
Languages : en
Pages : 320
Book Description
Heat Storage Systems for Buildings provides a unique resource for researchers, scientists, engineers, students, sectoral professional and people who work in the area of heat storage systems and applications for buildings. This book will further provide theoretical and practical materials, systems, applications, case studies and examples about various potential options for buildings. The primary focus is on thermodynamic analyses, performance evaluation, lifecycle assessment, environmental impact assessment and sustainability development criteria. - Includes case studies and examples explain various potential options for buildings - Examines, in detail, the design of heat storage methods - Presents environmental impact assessment and sustainability development criteria - Contains a section on artificial intelligence techniques and estimation methods in heat storage
Publisher: Elsevier
ISBN: 0128236264
Category : Science
Languages : en
Pages : 320
Book Description
Heat Storage Systems for Buildings provides a unique resource for researchers, scientists, engineers, students, sectoral professional and people who work in the area of heat storage systems and applications for buildings. This book will further provide theoretical and practical materials, systems, applications, case studies and examples about various potential options for buildings. The primary focus is on thermodynamic analyses, performance evaluation, lifecycle assessment, environmental impact assessment and sustainability development criteria. - Includes case studies and examples explain various potential options for buildings - Examines, in detail, the design of heat storage methods - Presents environmental impact assessment and sustainability development criteria - Contains a section on artificial intelligence techniques and estimation methods in heat storage
Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion
Author: Alejandro Datas
Publisher: Woodhead Publishing
ISBN: 0128204214
Category : Science
Languages : en
Pages : 370
Book Description
Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion presents a comprehensive analysis of thermal energy storage systems operating at beyond 800°C. Editor Dr. Alejandro Datas and his team of expert contributors from a variety of regions summarize the main technological options and the most relevant materials and characterization considerations to enable the reader to make the most effective and efficient decisions.This book helps the reader to solve the very specific challenges associated with working within an ultra-high temperature energy storage setting. It condenses and summarizes the latest knowledge, covering fundamentals, device design, materials selection and applications, as well as thermodynamic cycles and solid-state devices for ultra-high temperature energy conversion.This book provides a comprehensive and multidisciplinary guide to engineers and researchers in a variety of fields including energy conversion, storage, cogeneration, thermodynamics, numerical methods, CSP, and materials engineering. It firstly provides a review of fundamental concepts before exploring numerical methods for fluid-dynamics and phase change materials, before presenting more complex elements such as heat transfer fluids, thermal insulation, thermodynamic cycles, and a variety of energy conversation methods including thermophotovoltaic, thermionic, and combined heat and power. - Reviews the main technologies enabling ultra-high temperature energy storage and conversion, including both thermodynamic cycles and solid-state devices - Includes the applications for ultra-high temperature energy storage systems, both in terrestrial and space environments - Analyzes the thermophysical properties and relevant experimental and theoretical methods for the analysis of high-temperature materials
Publisher: Woodhead Publishing
ISBN: 0128204214
Category : Science
Languages : en
Pages : 370
Book Description
Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion presents a comprehensive analysis of thermal energy storage systems operating at beyond 800°C. Editor Dr. Alejandro Datas and his team of expert contributors from a variety of regions summarize the main technological options and the most relevant materials and characterization considerations to enable the reader to make the most effective and efficient decisions.This book helps the reader to solve the very specific challenges associated with working within an ultra-high temperature energy storage setting. It condenses and summarizes the latest knowledge, covering fundamentals, device design, materials selection and applications, as well as thermodynamic cycles and solid-state devices for ultra-high temperature energy conversion.This book provides a comprehensive and multidisciplinary guide to engineers and researchers in a variety of fields including energy conversion, storage, cogeneration, thermodynamics, numerical methods, CSP, and materials engineering. It firstly provides a review of fundamental concepts before exploring numerical methods for fluid-dynamics and phase change materials, before presenting more complex elements such as heat transfer fluids, thermal insulation, thermodynamic cycles, and a variety of energy conversation methods including thermophotovoltaic, thermionic, and combined heat and power. - Reviews the main technologies enabling ultra-high temperature energy storage and conversion, including both thermodynamic cycles and solid-state devices - Includes the applications for ultra-high temperature energy storage systems, both in terrestrial and space environments - Analyzes the thermophysical properties and relevant experimental and theoretical methods for the analysis of high-temperature materials
Future Energy
Author: Trevor Letcher
Publisher: Elsevier
ISBN: 0080564879
Category : Business & Economics
Languages : en
Pages : 415
Book Description
Future Energy will allow us to make reasonable, logical and correct decisions on our future energy as a result of two of the most serious problems that the civilized world has to face; the looming shortage of oil (which supplies most of our transport fuel) and the alarming rise in atmospheric carbon dioxide over the past 50 years (resulting from the burning of oil, gas and coal and the loss of forests) that threatens to change the world's climate through global warming. Future Energy focuses on all the types of energy available to us, taking into account a future involving a reduction in oil and gas production and the rapidly increasing amount of carbon dioxide in our atmosphere. It is unique in the genre of books of similar title in that each chapter has been written by a scientist or engineer who is an expert in his or her field. The book is divided into four sections: - Traditional Fossil Fuel and Nuclear Energy - Renewable Energy - Potentially Important New Types of Energy - New Aspects to Future Energy Usage Each chapter highlights the basic theory and implementation, scope, problems and costs associated with a particular type of energy. The traditional fuels are included because they will be with us for decades to come - but, we hope, in a cleaner form. The renewable energy types includes wind power, wave power, tidal energy, two forms of solar energy, bio-mass, hydroelectricity, geothermal and the hydrogen economy. Potentially important new types of energy include: pebble bed nuclear reactors, nuclear fusion, methane hydrates and recent developments in fuel cells and batteries. - Written by experts in the key future energy disciplines from around the globe - Details of all possible forms of energy that are and will be available globally in the next two decades - Puts each type of available energy into perspective with realistic, future options
Publisher: Elsevier
ISBN: 0080564879
Category : Business & Economics
Languages : en
Pages : 415
Book Description
Future Energy will allow us to make reasonable, logical and correct decisions on our future energy as a result of two of the most serious problems that the civilized world has to face; the looming shortage of oil (which supplies most of our transport fuel) and the alarming rise in atmospheric carbon dioxide over the past 50 years (resulting from the burning of oil, gas and coal and the loss of forests) that threatens to change the world's climate through global warming. Future Energy focuses on all the types of energy available to us, taking into account a future involving a reduction in oil and gas production and the rapidly increasing amount of carbon dioxide in our atmosphere. It is unique in the genre of books of similar title in that each chapter has been written by a scientist or engineer who is an expert in his or her field. The book is divided into four sections: - Traditional Fossil Fuel and Nuclear Energy - Renewable Energy - Potentially Important New Types of Energy - New Aspects to Future Energy Usage Each chapter highlights the basic theory and implementation, scope, problems and costs associated with a particular type of energy. The traditional fuels are included because they will be with us for decades to come - but, we hope, in a cleaner form. The renewable energy types includes wind power, wave power, tidal energy, two forms of solar energy, bio-mass, hydroelectricity, geothermal and the hydrogen economy. Potentially important new types of energy include: pebble bed nuclear reactors, nuclear fusion, methane hydrates and recent developments in fuel cells and batteries. - Written by experts in the key future energy disciplines from around the globe - Details of all possible forms of energy that are and will be available globally in the next two decades - Puts each type of available energy into perspective with realistic, future options
A Thermochemical Heat Storage System for Households
Author: Armand Fopah Lele
Publisher: Springer
ISBN: 3319412280
Category : Science
Languages : en
Pages : 220
Book Description
The book offers a comprehensive report on the design and optimization of a thermochemical heat storage system for use in buildings. It combines theoretical and experimental work, with a special emphasis on model-based methods. It describes the numerical modeling of the heat exchanger, which allows recovery of about two thirds of the waste heat from both solar and thermal energy. The book also provides readers with a snapshot of current research on thermochemical storage systems, and an in-depth review of the most important concepts and methods in thermal management modeling. It represents a valuable resource for students, engineers and researchers interested in thermal energy storage processes, as well as for those dealing with modeling and 3D simulations in the field of energy and process engineering.
Publisher: Springer
ISBN: 3319412280
Category : Science
Languages : en
Pages : 220
Book Description
The book offers a comprehensive report on the design and optimization of a thermochemical heat storage system for use in buildings. It combines theoretical and experimental work, with a special emphasis on model-based methods. It describes the numerical modeling of the heat exchanger, which allows recovery of about two thirds of the waste heat from both solar and thermal energy. The book also provides readers with a snapshot of current research on thermochemical storage systems, and an in-depth review of the most important concepts and methods in thermal management modeling. It represents a valuable resource for students, engineers and researchers interested in thermal energy storage processes, as well as for those dealing with modeling and 3D simulations in the field of energy and process engineering.
The State of the Art of Thermo-Chemical Heat Storage
Author: Salvatore Vasta
Publisher: MDPI
ISBN: 3036513736
Category : Science
Languages : en
Pages : 112
Book Description
The heat storage based on thermochemical technology is associated with higher amounts of energy stored with respect to systems based on sensible heat. This interesting feature is stimulating the interest of the scientific community, among energy providers and grid managers, since it can effectively support the operation and integration of renewable high-efficiency systems and local smart grids. Research in this field is achieving unprecedented goals thanks to the profitable exploitation of results obtained in the field of heat pumps and thermally driven systems. The present issue offers the reader a sensational window to this rapidly evolving world.
Publisher: MDPI
ISBN: 3036513736
Category : Science
Languages : en
Pages : 112
Book Description
The heat storage based on thermochemical technology is associated with higher amounts of energy stored with respect to systems based on sensible heat. This interesting feature is stimulating the interest of the scientific community, among energy providers and grid managers, since it can effectively support the operation and integration of renewable high-efficiency systems and local smart grids. Research in this field is achieving unprecedented goals thanks to the profitable exploitation of results obtained in the field of heat pumps and thermally driven systems. The present issue offers the reader a sensational window to this rapidly evolving world.