Author: Joseph Woicik
Publisher: Springer
ISBN: 3319240439
Category : Science
Languages : en
Pages : 576
Book Description
This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.
Hard X-ray Photoelectron Spectroscopy (HAXPES)
Author: Joseph Woicik
Publisher: Springer
ISBN: 3319240439
Category : Science
Languages : en
Pages : 576
Book Description
This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.
Publisher: Springer
ISBN: 3319240439
Category : Science
Languages : en
Pages : 576
Book Description
This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.
X-ray Standing Wave Technique, The: Principles And Applications
Author: Jorg Zegenhagen
Publisher: World Scientific
ISBN: 9814513105
Category : Science
Languages : en
Pages : 557
Book Description
The X-ray standing wave (XSW) technique is an X-ray interferometric method combining diffraction with a multitude of spectroscopic techniques. It is extremely powerful for obtaining information about virtually all properties of surfaces and interfaces on the atomic scale. However, as with any other technique, it has strengths and limitations. The proper use and necessary understanding of this method requires knowledge in quite different fields of physics and technology. This volume presents comprehensively the theoretical background, technical requirements and distinguished experimental highlights of the technique. Containing contributions from the most prominent experts of the technique, such as Andre Authier, Boris Batterman, Michael J Bedzyk, Jene Golovchenko, Victor Kohn, Michail Kovalchuk, Gerhard Materlik and D Phil Woodruff, the book equips scientists with all the necessary information and knowledge to understand and use the XSW technique in practically all applications.
Publisher: World Scientific
ISBN: 9814513105
Category : Science
Languages : en
Pages : 557
Book Description
The X-ray standing wave (XSW) technique is an X-ray interferometric method combining diffraction with a multitude of spectroscopic techniques. It is extremely powerful for obtaining information about virtually all properties of surfaces and interfaces on the atomic scale. However, as with any other technique, it has strengths and limitations. The proper use and necessary understanding of this method requires knowledge in quite different fields of physics and technology. This volume presents comprehensively the theoretical background, technical requirements and distinguished experimental highlights of the technique. Containing contributions from the most prominent experts of the technique, such as Andre Authier, Boris Batterman, Michael J Bedzyk, Jene Golovchenko, Victor Kohn, Michail Kovalchuk, Gerhard Materlik and D Phil Woodruff, the book equips scientists with all the necessary information and knowledge to understand and use the XSW technique in practically all applications.
Compendium of Surface and Interface Analysis
Author: The Surface Science Society of Japan
Publisher: Springer
ISBN: 9811061564
Category : Technology & Engineering
Languages : en
Pages : 807
Book Description
This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
Publisher: Springer
ISBN: 9811061564
Category : Technology & Engineering
Languages : en
Pages : 807
Book Description
This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.
Photoelectron Spectroscopy
Author: Shigemasa Suga
Publisher: Springer
ISBN: 3642375308
Category : Science
Languages : en
Pages : 389
Book Description
Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization dependent measurements in the whole photon energy spectrum of the spectra provide useful information on the symmetry of orbitals. The book deals with the fundamental concepts and approaches for the application of this technique to materials studies. Complementary techniques such as inverse photoemission, photoelectron diffraction, photon spectroscopy including infrared and X-ray and scanning tunneling spectroscopy are presented. This book provides not only a wide scope of photoelectron spectroscopy of solids but also extends our understanding of electronic structures beyond photoelectron spectroscopy.
Publisher: Springer
ISBN: 3642375308
Category : Science
Languages : en
Pages : 389
Book Description
Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization dependent measurements in the whole photon energy spectrum of the spectra provide useful information on the symmetry of orbitals. The book deals with the fundamental concepts and approaches for the application of this technique to materials studies. Complementary techniques such as inverse photoemission, photoelectron diffraction, photon spectroscopy including infrared and X-ray and scanning tunneling spectroscopy are presented. This book provides not only a wide scope of photoelectron spectroscopy of solids but also extends our understanding of electronic structures beyond photoelectron spectroscopy.
Application of Ambient Pressure X-ray Photoelectron Spectroscopy to Catalysis
Author: Franklin Tao
Publisher: John Wiley & Sons
ISBN: 1119845475
Category : Science
Languages : en
Pages : 294
Book Description
APPLICATION OF AMBIENT PRESSURE X-RAY PHOTOELECTRON SPECTROSCOPY TO CATALYSIS Authoritative and detailed reference on ambient-pressure x-ray photoelectron spectroscopy for practitioners and researchers starting in the field Application of Ambient Pressure X-ray Photoelectron Spectroscopy to Catalysis introduces a relatively new analytical method and its applications to chemistry, energy, environmental, and materials sciences, particularly the field of heterogeneous catalysis, covering its background and historical development, its principles, the instrumentation required to use it, analysis of data collected with it, and the challenges it faces. The features of this method are described early in the text; the starting chapters provide a base for understanding how AP-XPS tracks crucial information in terms of the surface of a catalyst during catalysis. The second half of this book delves into the specific applications of AP-XPS to fundamental studies of different catalytic reactions. In later chapters, the focus is on how AP-XPS could provide key information toward understanding catalytic mechanisms. To aid in reader comprehension, the takeaways of each chapter are underlined. In Application of Ambient Pressure X-ray Photoelectron Spectroscopy to Catalysis, readers can expect to find detailed information on specific topics such as: Going from surface of model catalyst in UHV to surface of nanoparticle catalyst during catalysis Application of XPS from surface in UHV to surface in gas or liquid phase and fundamentals of X-ray spectroscopy Significance and challenges of studying surface of a catalyst in gaseous phase and instrumentation of ambient pressure X-ray photoelectron spectrometers Experimental methods of AP-XPS studies and difference in data analysis between AP-XPS and high vacuum XPS Ambient Pressure X-Ray Photoelectron Spectroscopy is an ideal resource for entry level researchers and students involved in x-ray photoelectron spectroscopy. Additionally, the text will appeal to scientists in more senior roles in academic and government laboratory institutions in the fields of chemistry, chemical engineering, energy science, and materials science.
Publisher: John Wiley & Sons
ISBN: 1119845475
Category : Science
Languages : en
Pages : 294
Book Description
APPLICATION OF AMBIENT PRESSURE X-RAY PHOTOELECTRON SPECTROSCOPY TO CATALYSIS Authoritative and detailed reference on ambient-pressure x-ray photoelectron spectroscopy for practitioners and researchers starting in the field Application of Ambient Pressure X-ray Photoelectron Spectroscopy to Catalysis introduces a relatively new analytical method and its applications to chemistry, energy, environmental, and materials sciences, particularly the field of heterogeneous catalysis, covering its background and historical development, its principles, the instrumentation required to use it, analysis of data collected with it, and the challenges it faces. The features of this method are described early in the text; the starting chapters provide a base for understanding how AP-XPS tracks crucial information in terms of the surface of a catalyst during catalysis. The second half of this book delves into the specific applications of AP-XPS to fundamental studies of different catalytic reactions. In later chapters, the focus is on how AP-XPS could provide key information toward understanding catalytic mechanisms. To aid in reader comprehension, the takeaways of each chapter are underlined. In Application of Ambient Pressure X-ray Photoelectron Spectroscopy to Catalysis, readers can expect to find detailed information on specific topics such as: Going from surface of model catalyst in UHV to surface of nanoparticle catalyst during catalysis Application of XPS from surface in UHV to surface in gas or liquid phase and fundamentals of X-ray spectroscopy Significance and challenges of studying surface of a catalyst in gaseous phase and instrumentation of ambient pressure X-ray photoelectron spectrometers Experimental methods of AP-XPS studies and difference in data analysis between AP-XPS and high vacuum XPS Ambient Pressure X-Ray Photoelectron Spectroscopy is an ideal resource for entry level researchers and students involved in x-ray photoelectron spectroscopy. Additionally, the text will appeal to scientists in more senior roles in academic and government laboratory institutions in the fields of chemistry, chemical engineering, energy science, and materials science.
Auger- and X-Ray Photoelectron Spectroscopy in Materials Science
Author: Siegfried Hofmann
Publisher: Springer Science & Business Media
ISBN: 3642273807
Category : Science
Languages : en
Pages : 544
Book Description
To anyone who is interested in surface chemical analysis of materials on the nanometer scale, this book is prepared to give appropriate information. Based on typical application examples in materials science, a concise approach to all aspects of quantitative analysis of surfaces and thin films with AES and XPS is provided. Starting from basic principles which are step by step developed into practically useful equations, extensive guidance is given to graduate students as well as to experienced researchers. Key chapters are those on quantitative surface analysis and on quantitative depth profiling, including recent developments in topics such as surface excitation parameter and backscattering correction factor. Basic relations are derived for emission and excitation angle dependencies in the analysis of bulk material and of fractional nano-layer structures, and for both smooth and rough surfaces. It is shown how to optimize the analytical strategy, signal-to-noise ratio, certainty and detection limit. Worked examples for quantification of alloys and of layer structures in practical cases (e.g. contamination, evaporation, segregation and oxidation) are used to critically review different approaches to quantification with respect to average matrix correction factors and matrix relative sensitivity factors. State-of-the-art issues in quantitative, destructive and non-destructive depth profiling are discussed with emphasis on sputter depth profiling and on angle resolved XPS and AES. Taking into account preferential sputtering and electron backscattering corrections, an introduction to the mixing-roughness-information depth (MRI) model and its extensions is presented.
Publisher: Springer Science & Business Media
ISBN: 3642273807
Category : Science
Languages : en
Pages : 544
Book Description
To anyone who is interested in surface chemical analysis of materials on the nanometer scale, this book is prepared to give appropriate information. Based on typical application examples in materials science, a concise approach to all aspects of quantitative analysis of surfaces and thin films with AES and XPS is provided. Starting from basic principles which are step by step developed into practically useful equations, extensive guidance is given to graduate students as well as to experienced researchers. Key chapters are those on quantitative surface analysis and on quantitative depth profiling, including recent developments in topics such as surface excitation parameter and backscattering correction factor. Basic relations are derived for emission and excitation angle dependencies in the analysis of bulk material and of fractional nano-layer structures, and for both smooth and rough surfaces. It is shown how to optimize the analytical strategy, signal-to-noise ratio, certainty and detection limit. Worked examples for quantification of alloys and of layer structures in practical cases (e.g. contamination, evaporation, segregation and oxidation) are used to critically review different approaches to quantification with respect to average matrix correction factors and matrix relative sensitivity factors. State-of-the-art issues in quantitative, destructive and non-destructive depth profiling are discussed with emphasis on sputter depth profiling and on angle resolved XPS and AES. Taking into account preferential sputtering and electron backscattering corrections, an introduction to the mixing-roughness-information depth (MRI) model and its extensions is presented.
Electron Spectroscopy
Author: C. R. Brundle
Publisher: Mittal Publications
ISBN: 9788170998259
Category : Electron spectroscopy
Languages : en
Pages : 274
Book Description
Publisher: Mittal Publications
ISBN: 9788170998259
Category : Electron spectroscopy
Languages : en
Pages : 274
Book Description
Spectroscopy of Complex Oxide Interfaces
Author: Claudia Cancellieri
Publisher: Springer
ISBN: 3319749897
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.
Publisher: Springer
ISBN: 3319749897
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.
Modern Techniques of Surface Science
Author: D. P. Woodruff
Publisher: Cambridge University Press
ISBN: 9780521424981
Category : Science
Languages : en
Pages : 612
Book Description
Revised and expanded second edition of the standard work on new techniques for studying solid surfaces.
Publisher: Cambridge University Press
ISBN: 9780521424981
Category : Science
Languages : en
Pages : 612
Book Description
Revised and expanded second edition of the standard work on new techniques for studying solid surfaces.
Photoelectron Spectroscopy
Author: Shigemasa Suga
Publisher: Springer Nature
ISBN: 3030640736
Category : Science
Languages : en
Pages : 511
Book Description
This book presents photoelectron spectroscopy as a valuable method for studying the electronic structures of various solid materials in the bulk state, on surfaces, and at buried interfaces. This second edition introduces the advanced technique of high-resolution and high-efficiency spin- and momentum-resolved photoelectron spectroscopy using a novel momentum microscope, enabling high-precision measurements down to a length scale of some tens of nanometers. The book also deals with fundamental concepts and approaches to applying this and other complementary techniques, such as inverse photoemission, photoelectron diffraction, scanning tunneling spectroscopy, as well as photon spectroscopy based on (soft) x-ray absorption and resonance inelastic (soft) x-ray scattering. This book is the ideal tool to expand readers’ understanding of this marvelously versatile experimental method, as well as the electronic structures of metals and insulators.
Publisher: Springer Nature
ISBN: 3030640736
Category : Science
Languages : en
Pages : 511
Book Description
This book presents photoelectron spectroscopy as a valuable method for studying the electronic structures of various solid materials in the bulk state, on surfaces, and at buried interfaces. This second edition introduces the advanced technique of high-resolution and high-efficiency spin- and momentum-resolved photoelectron spectroscopy using a novel momentum microscope, enabling high-precision measurements down to a length scale of some tens of nanometers. The book also deals with fundamental concepts and approaches to applying this and other complementary techniques, such as inverse photoemission, photoelectron diffraction, scanning tunneling spectroscopy, as well as photon spectroscopy based on (soft) x-ray absorption and resonance inelastic (soft) x-ray scattering. This book is the ideal tool to expand readers’ understanding of this marvelously versatile experimental method, as well as the electronic structures of metals and insulators.