Author: David Kinderlehrer
Publisher: Springer Science & Business Media
ISBN: 9780817635244
Category : Mathematics
Languages : en
Pages : 472
Book Description
The work of Hans Lewy (1904--1988) has had a profound influence in the direction of applied mathematics and partial differential equations, in particular, from the late 1920s. Two of the particulars are well known. The Courant--Friedrichs--Lewy condition (1928), or CFL condition, was devised to obtain existence and approximation results. This condition, relating the time and spatial discretizations for finite difference schemes, is now universally employed in the simulation of solutions of equations describing propagation phenomena. Lewy's example of a linear equation with no solution (1957), with its attendant consequence that most equations have no solution, was not merely an unexpected fact, but changed the viewpoint of the entire field. Lewy made pivotal contributions in many other areas, for example, the regularity theory of elliptic equations and systems, the Monge-- AmpSre Equation, the Minkowski Problem, the asymptotic analysis of boundary value problems, and several complex variables. He was among the first to study variational inequalities. In much of his work, his underlying philosophy was that simple tools of function theory could help one understand the essential concepts embedded in an issue, although at a cost in generality. This approach was extremely successful. In this two-volume work, most all of Lewy's papers are presented, in chronological order. They are preceded by several short essays about Lewy himself, prepared by Helen Lewy, Constance Reid, and David Kinderlehrer, and commentaries on his work by Erhard Heinz, Peter Lax, Jean Leray, Richard MacCamy, Fran?ois Treves, and Louis Nirenberg. Additionally, there are Lewy's own remarks on the occasion of his honorary degree from the University of Bonn.
Hans Lewy Selecta
Author: David Kinderlehrer
Publisher: Springer Science & Business Media
ISBN: 9780817635244
Category : Mathematics
Languages : en
Pages : 472
Book Description
The work of Hans Lewy (1904--1988) has had a profound influence in the direction of applied mathematics and partial differential equations, in particular, from the late 1920s. Two of the particulars are well known. The Courant--Friedrichs--Lewy condition (1928), or CFL condition, was devised to obtain existence and approximation results. This condition, relating the time and spatial discretizations for finite difference schemes, is now universally employed in the simulation of solutions of equations describing propagation phenomena. Lewy's example of a linear equation with no solution (1957), with its attendant consequence that most equations have no solution, was not merely an unexpected fact, but changed the viewpoint of the entire field. Lewy made pivotal contributions in many other areas, for example, the regularity theory of elliptic equations and systems, the Monge-- AmpSre Equation, the Minkowski Problem, the asymptotic analysis of boundary value problems, and several complex variables. He was among the first to study variational inequalities. In much of his work, his underlying philosophy was that simple tools of function theory could help one understand the essential concepts embedded in an issue, although at a cost in generality. This approach was extremely successful. In this two-volume work, most all of Lewy's papers are presented, in chronological order. They are preceded by several short essays about Lewy himself, prepared by Helen Lewy, Constance Reid, and David Kinderlehrer, and commentaries on his work by Erhard Heinz, Peter Lax, Jean Leray, Richard MacCamy, Fran?ois Treves, and Louis Nirenberg. Additionally, there are Lewy's own remarks on the occasion of his honorary degree from the University of Bonn.
Publisher: Springer Science & Business Media
ISBN: 9780817635244
Category : Mathematics
Languages : en
Pages : 472
Book Description
The work of Hans Lewy (1904--1988) has had a profound influence in the direction of applied mathematics and partial differential equations, in particular, from the late 1920s. Two of the particulars are well known. The Courant--Friedrichs--Lewy condition (1928), or CFL condition, was devised to obtain existence and approximation results. This condition, relating the time and spatial discretizations for finite difference schemes, is now universally employed in the simulation of solutions of equations describing propagation phenomena. Lewy's example of a linear equation with no solution (1957), with its attendant consequence that most equations have no solution, was not merely an unexpected fact, but changed the viewpoint of the entire field. Lewy made pivotal contributions in many other areas, for example, the regularity theory of elliptic equations and systems, the Monge-- AmpSre Equation, the Minkowski Problem, the asymptotic analysis of boundary value problems, and several complex variables. He was among the first to study variational inequalities. In much of his work, his underlying philosophy was that simple tools of function theory could help one understand the essential concepts embedded in an issue, although at a cost in generality. This approach was extremely successful. In this two-volume work, most all of Lewy's papers are presented, in chronological order. They are preceded by several short essays about Lewy himself, prepared by Helen Lewy, Constance Reid, and David Kinderlehrer, and commentaries on his work by Erhard Heinz, Peter Lax, Jean Leray, Richard MacCamy, Fran?ois Treves, and Louis Nirenberg. Additionally, there are Lewy's own remarks on the occasion of his honorary degree from the University of Bonn.
Hans Lewy Selecta
Author: Hans Lewy
Publisher: Springer Science & Business Media
ISBN: 9780817635237
Category : Mathematics
Languages : en
Pages : 452
Book Description
The work of Hans Lewy (1904--1988) has had a profound influence in the direction of applied mathematics and partial differential equations, in particular, from the late 1920s. Two of the particulars are well known. The Courant--Friedrichs--Lewy condition (1928), or CFL condition, was devised to obtain existence and approximation results. This condition, relating the time and spatial discretizations for finite difference schemes, is now universally employed in the simulation of solutions of equations describing propagation phenomena. Lewy's example of a linear equation with no solution (1957), with its attendant consequence that most equations have no solution, was not merely an unexpected fact, but changed the viewpoint of the entire field. Lewy made pivotal contributions in many other areas, for example, the regularity theory of elliptic equations and systems, the Monge--Ampère Equation, the Minkowski Problem, the asymptotic analysis of boundary value problems, and several complex variables. He was among the first to study variational inequalities. In much of his work, his underlying philosophy was that simple tools of function theory could help one understand the essential concepts embedded in an issue, although at a cost in generality. This approach was extremely successful. In this two-volume work, most all of Lewy's papers are presented, in chronological order. They are preceded by several short essays about Lewy himself, prepared by Helen Lewy, Constance Reid, and David Kinderlehrer, and commentaries on his work by Erhard Heinz, Peter Lax, Jean Leray, Richard MacCamy, François Treves, and Louis Nirenberg. Additionally, there are Lewy's own remarks on the occasion of his honorary degree from the University of Bonn.
Publisher: Springer Science & Business Media
ISBN: 9780817635237
Category : Mathematics
Languages : en
Pages : 452
Book Description
The work of Hans Lewy (1904--1988) has had a profound influence in the direction of applied mathematics and partial differential equations, in particular, from the late 1920s. Two of the particulars are well known. The Courant--Friedrichs--Lewy condition (1928), or CFL condition, was devised to obtain existence and approximation results. This condition, relating the time and spatial discretizations for finite difference schemes, is now universally employed in the simulation of solutions of equations describing propagation phenomena. Lewy's example of a linear equation with no solution (1957), with its attendant consequence that most equations have no solution, was not merely an unexpected fact, but changed the viewpoint of the entire field. Lewy made pivotal contributions in many other areas, for example, the regularity theory of elliptic equations and systems, the Monge--Ampère Equation, the Minkowski Problem, the asymptotic analysis of boundary value problems, and several complex variables. He was among the first to study variational inequalities. In much of his work, his underlying philosophy was that simple tools of function theory could help one understand the essential concepts embedded in an issue, although at a cost in generality. This approach was extremely successful. In this two-volume work, most all of Lewy's papers are presented, in chronological order. They are preceded by several short essays about Lewy himself, prepared by Helen Lewy, Constance Reid, and David Kinderlehrer, and commentaries on his work by Erhard Heinz, Peter Lax, Jean Leray, Richard MacCamy, François Treves, and Louis Nirenberg. Additionally, there are Lewy's own remarks on the occasion of his honorary degree from the University of Bonn.
Transcending Tradition: Jewish Mathematicians in German Speaking Academic Culture
Author: Birgit Bergmann
Publisher: Springer Science & Business Media
ISBN: 3642224644
Category : Mathematics
Languages : en
Pages : 297
Book Description
A companion publication to the international exhibition "Transcending Tradition: Jewish Mathematicians in German-Speaking Academic Culture", the catalogue explores the working lives and activities of Jewish mathematicians in German-speaking countries during the period between the legal and political emancipation of the Jews in the 19th century and their persecution in Nazi Germany. It highlights the important role Jewish mathematicians played in all areas of mathematical culture during the Wilhelmine Empire and the Weimar Republic, and recalls their emigration, flight or death after 1933.
Publisher: Springer Science & Business Media
ISBN: 3642224644
Category : Mathematics
Languages : en
Pages : 297
Book Description
A companion publication to the international exhibition "Transcending Tradition: Jewish Mathematicians in German-Speaking Academic Culture", the catalogue explores the working lives and activities of Jewish mathematicians in German-speaking countries during the period between the legal and political emancipation of the Jews in the 19th century and their persecution in Nazi Germany. It highlights the important role Jewish mathematicians played in all areas of mathematical culture during the Wilhelmine Empire and the Weimar Republic, and recalls their emigration, flight or death after 1933.
The New Era in American Mathematics, 1920–1950
Author: Karen Hunger Parshall
Publisher: Princeton University Press
ISBN: 0691235244
Category : History
Languages : en
Pages : 640
Book Description
"The 1920s witnessed the birth of a serious mathematical research community in America. Prior to this, mathematical research was dominated by scholars based in Europe-but World War I had made the importance of scientific and technological development clear to the American research community, resulting in the establishment of new scientific initiatives and infrastructure. Physics and chemistry were the beneficiaries of this renewed scientific focus, but the mathematical community also benefitted, and over time, began to flourish. Over the course of the next two decades, despite significant obstacles, this constellation of mathematical researchers, programs, and government infrastructure would become one of the strongest in the world. In this meticulously-researched book, Karen Parshall documents the uncertain, but ultimately successful, rise of American mathematics during this time. Drawing on research carried out in archives around the country and around the world, as well as on the secondary literature, she reveals how geopolitical circumstances shifted the course of international mathematics. She provides surveys of the mathematical research landscape in the 1920s, 30s, and 40s, introduces the key players and institutions in mathematics at that time, and documents the effect of the Great Depression and the second world war on the international mathematical community. The result is a comprehensive account of the shift of mathematics' "center of gravity" to the American stage"--
Publisher: Princeton University Press
ISBN: 0691235244
Category : History
Languages : en
Pages : 640
Book Description
"The 1920s witnessed the birth of a serious mathematical research community in America. Prior to this, mathematical research was dominated by scholars based in Europe-but World War I had made the importance of scientific and technological development clear to the American research community, resulting in the establishment of new scientific initiatives and infrastructure. Physics and chemistry were the beneficiaries of this renewed scientific focus, but the mathematical community also benefitted, and over time, began to flourish. Over the course of the next two decades, despite significant obstacles, this constellation of mathematical researchers, programs, and government infrastructure would become one of the strongest in the world. In this meticulously-researched book, Karen Parshall documents the uncertain, but ultimately successful, rise of American mathematics during this time. Drawing on research carried out in archives around the country and around the world, as well as on the secondary literature, she reveals how geopolitical circumstances shifted the course of international mathematics. She provides surveys of the mathematical research landscape in the 1920s, 30s, and 40s, introduces the key players and institutions in mathematics at that time, and documents the effect of the Great Depression and the second world war on the international mathematical community. The result is a comprehensive account of the shift of mathematics' "center of gravity" to the American stage"--
Menahem Max Schiffer: Selected Papers Volume 1
Author: Peter Duren
Publisher: Springer Science & Business Media
ISBN: 0817680853
Category : Mathematics
Languages : en
Pages : 572
Book Description
This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer’s works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.
Publisher: Springer Science & Business Media
ISBN: 0817680853
Category : Mathematics
Languages : en
Pages : 572
Book Description
This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer’s works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 930
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 930
Book Description
Selecta di opere di Aldo Andreotti: Complessi di operatori differenziali
Author: Aldo Andreotti
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 642
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 642
Book Description
Selecta di opere di Aldo Andreotti: Analisi complessa
Author: Aldo Andreotti
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 682
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 682
Book Description
The Abel Prize
Author: Helge Holden
Publisher: Springer Science & Business Media
ISBN: 3642013732
Category : Mathematics
Languages : en
Pages : 325
Book Description
The book presents the winners of the first five Abel Prizes in mathematics: 2003 Jean-Pierre Serre; 2004 Sir Michael Atiyah and Isadore Singer; 2005 Peter D. Lax; 2006 Lennart Carleson; and 2007 S.R. Srinivasa Varadhan. Each laureate provides an autobiography or an interview, a curriculum vitae, and a complete bibliography. This is complemented by a scholarly description of their work written by leading experts in the field and by a brief history of the Abel Prize. Interviews with the laureates can be found at http://extras.springer.com .
Publisher: Springer Science & Business Media
ISBN: 3642013732
Category : Mathematics
Languages : en
Pages : 325
Book Description
The book presents the winners of the first five Abel Prizes in mathematics: 2003 Jean-Pierre Serre; 2004 Sir Michael Atiyah and Isadore Singer; 2005 Peter D. Lax; 2006 Lennart Carleson; and 2007 S.R. Srinivasa Varadhan. Each laureate provides an autobiography or an interview, a curriculum vitae, and a complete bibliography. This is complemented by a scholarly description of their work written by leading experts in the field and by a brief history of the Abel Prize. Interviews with the laureates can be found at http://extras.springer.com .
Lewy Selecta
Author: D. Kinderlehrer
Publisher:
ISBN: 9780817641801
Category : Mathematics
Languages : en
Pages : 1000
Book Description
The work of Hans Lewy (1904-1988) has touched nearly every significant area of functional analysis. The papers presented in this text represent a selection of his best work with commentaries from some of his students.
Publisher:
ISBN: 9780817641801
Category : Mathematics
Languages : en
Pages : 1000
Book Description
The work of Hans Lewy (1904-1988) has touched nearly every significant area of functional analysis. The papers presented in this text represent a selection of his best work with commentaries from some of his students.