Handbook of Stochastic Methods

Handbook of Stochastic Methods PDF Author: Crispin W. Gardiner
Publisher: Springer Verlag
ISBN: 9783540616344
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description

Handbook of Stochastic Methods

Handbook of Stochastic Methods PDF Author: Crispin W. Gardiner
Publisher: Springer Verlag
ISBN: 9783540616344
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description


Stochastic Methods

Stochastic Methods PDF Author: Crispin Gardiner
Publisher: Springer
ISBN: 9783642089626
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
In the third edition of this classic the chapter on quantum Marcov processes has been replaced by a chapter on numerical treatment of stochastic differential equations to make the book even more valuable for practitioners.

Quantum Noise

Quantum Noise PDF Author: Crispin Gardiner
Publisher: Springer Science & Business Media
ISBN: 9783540223016
Category : Science
Languages : en
Pages : 476

Get Book Here

Book Description
This book offers a systematic and comprehensive exposition of the quantum stochastic methods that have been developed in the field of quantum optics. It includes new treatments of photodetection, quantum amplifier theory, non-Markovian quantum stochastic processes, quantum input--output theory, and positive P-representations. It is the first book in which quantum noise is described by a mathematically complete theory in a form that is also suited to practical applications. Special attention is paid to non-classical effects, such as squeezing and antibunching. Chapters added to the previous edition, on the stochastic Schrödinger equation, and on cascaded quantum systems, and now supplemented, in the third edition by a chapter on recent developments in various pertinent fields such as laser cooling, Bose-Einstein condensation, quantum feedback and quantum information.

Handbook of Stochastic Analysis and Applications

Handbook of Stochastic Analysis and Applications PDF Author: D. Kannan
Publisher: CRC Press
ISBN: 9780824706609
Category : Mathematics
Languages : en
Pages : 800

Get Book Here

Book Description
An introduction to general theories of stochastic processes and modern martingale theory. The volume focuses on consistency, stability and contractivity under geometric invariance in numerical analysis, and discusses problems related to implementation, simulation, variable step size algorithms, and random number generation.

Stochastic Methods for Estimation and Problem Solving in Engineering

Stochastic Methods for Estimation and Problem Solving in Engineering PDF Author: Kadry, Seifedine
Publisher: IGI Global
ISBN: 1522550461
Category : Technology & Engineering
Languages : en
Pages : 291

Get Book Here

Book Description
Utilizing mathematical algorithms is an important aspect of recreating real-world problems in order to make important decisions. By generating a randomized algorithm that produces statistical patterns, it becomes easier to find solutions to countless situations. Stochastic Methods for Estimation and Problem Solving in Engineering provides emerging research on the role of random probability systems in mathematical models used in various fields of research. While highlighting topics, such as random probability distribution, linear systems, and transport profiling, this book explores the use and behavior of uncertain probability methods in business and science. This book is an important resource for engineers, researchers, students, professionals, and practitioners seeking current research on the challenges and opportunities of non-deterministic probability models.

Handbook of Monte Carlo Methods

Handbook of Monte Carlo Methods PDF Author: Dirk P. Kroese
Publisher: John Wiley & Sons
ISBN: 1118014952
Category : Mathematics
Languages : en
Pages : 627

Get Book Here

Book Description
A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.

Models of Random Processes

Models of Random Processes PDF Author: Igor N. Kovalenko
Publisher: CRC Press
ISBN: 9780849328701
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Devising and investigating random processes that describe mathematical models of phenomena is a major aspect of probability theory applications. Stochastic methods have penetrated into an unimaginably wide scope of problems encountered by researchers who need stochastic methods to solve problems and further their studies. This handbook supplies the knowledge you need on the modern theory of random processes. Packed with methods, Models of Random Processes: A Handbook for Mathematicians and Engineers presents definitions and properties on such widespread processes as Poisson, Markov, semi-Markov, Gaussian, and branching processes, and on special processes such as cluster, self-exiting, double stochastic Poisson, Gauss-Poisson, and extremal processes occurring in a variety of different practical problems. The handbook is based on an axiomatic definition of probability space, with strict definitions and constructions of random processes. Emphasis is placed on the constructive definition of each class of random processes, so that a process is explicitly defined by a sequence of independent random variables and can easily be implemented into the modelling. Models of Random Processes: A Handbook for Mathematicians and Engineers will be useful to researchers, engineers, postgraduate students and teachers in the fields of mathematics, physics, engineering, operations research, system analysis, econometrics, and many others.

Handbook of Probabilistic Models

Handbook of Probabilistic Models PDF Author: Pijush Samui
Publisher: Butterworth-Heinemann
ISBN: 0128165464
Category : Computers
Languages : en
Pages : 592

Get Book Here

Book Description
Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327

Get Book Here

Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Handbook of Markov Decision Processes

Handbook of Markov Decision Processes PDF Author: Eugene A. Feinberg
Publisher: Springer Science & Business Media
ISBN: 1461508053
Category : Business & Economics
Languages : en
Pages : 560

Get Book Here

Book Description
Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.