Handbook Of Machine Learning - Volume 2: Optimization And Decision Making PDF Download
Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Handbook Of Machine Learning - Volume 2: Optimization And Decision Making PDF full book. Access full book title Handbook Of Machine Learning - Volume 2: Optimization And Decision Making by Tshilidzi Marwala. Download full books in PDF and EPUB format.
Author: Tshilidzi Marwala
Publisher: World Scientific
ISBN: 981120568X
Category : Computers
Languages : en
Pages : 321
Get Book Here
Book Description
Building on , this volume on Optimization and Decision Making covers a range of algorithms and their applications. Like the first volume, it provides a starting point for machine learning enthusiasts as a comprehensive guide on classical optimization methods. It also provides an in-depth overview on how artificial intelligence can be used to define, disprove or validate economic modeling and decision making concepts.
Author: Tshilidzi Marwala
Publisher: World Scientific
ISBN: 981120568X
Category : Computers
Languages : en
Pages : 321
Get Book Here
Book Description
Building on , this volume on Optimization and Decision Making covers a range of algorithms and their applications. Like the first volume, it provides a starting point for machine learning enthusiasts as a comprehensive guide on classical optimization methods. It also provides an in-depth overview on how artificial intelligence can be used to define, disprove or validate economic modeling and decision making concepts.
Author: Vishal Jain
Publisher: CRC Press
ISBN: 100045567X
Category : Business & Economics
Languages : en
Pages : 295
Get Book Here
Book Description
Technology is moving at an exponential pace in this era of computational intelligence. Machine learning has emerged as one of the most promising tools used to challenge and think beyond current limitations. This handbook will provide readers with a leading edge to improving their products and processes through optimal and smarter machine learning techniques. This handbook focuses on new machine learning developments that can lead to newly developed applications. It uses a predictive and futuristic approach, which makes machine learning a promising tool for processes and sustainable solutions. It also promotes newer algorithms that are more efficient and reliable for new dimensions in discovering other applications, and then goes on to discuss the potential in making better use of machines in order to ensure optimal prediction, execution, and decision-making. Individuals looking for machine learning-based knowledge will find interest in this handbook. The readership ranges from undergraduate students of engineering and allied courses to researchers, professionals, and application designers.
Author: Carlo Vercellis
Publisher: John Wiley & Sons
ISBN: 1119965470
Category : Mathematics
Languages : en
Pages : 314
Get Book Here
Book Description
Business intelligence is a broad category of applications and technologies for gathering, providing access to, and analyzing data for the purpose of helping enterprise users make better business decisions. The term implies having a comprehensive knowledge of all factors that affect a business, such as customers, competitors, business partners, economic environment, and internal operations, therefore enabling optimal decisions to be made. Business Intelligence provides readers with an introduction and practical guide to the mathematical models and analysis methodologies vital to business intelligence. This book: Combines detailed coverage with a practical guide to the mathematical models and analysis methodologies of business intelligence. Covers all the hot topics such as data warehousing, data mining and its applications, machine learning, classification, supply optimization models, decision support systems, and analytical methods for performance evaluation. Is made accessible to readers through the careful definition and introduction of each concept, followed by the extensive use of examples and numerous real-life case studies. Explains how to utilise mathematical models and analysis models to make effective and good quality business decisions. This book is aimed at postgraduate students following data analysis and data mining courses. Researchers looking for a systematic and broad coverage of topics in operations research and mathematical models for decision-making will find this an invaluable guide.
Author: Mykel J. Kochenderfer
Publisher: MIT Press
ISBN: 0262370239
Category : Computers
Languages : en
Pages : 701
Get Book Here
Book Description
A broad introduction to algorithms for decision making under uncertainty, introducing the underlying mathematical problem formulations and the algorithms for solving them. Automated decision-making systems or decision-support systems—used in applications that range from aircraft collision avoidance to breast cancer screening—must be designed to account for various sources of uncertainty while carefully balancing multiple objectives. This textbook provides a broad introduction to algorithms for decision making under uncertainty, covering the underlying mathematical problem formulations and the algorithms for solving them. The book first addresses the problem of reasoning about uncertainty and objectives in simple decisions at a single point in time, and then turns to sequential decision problems in stochastic environments where the outcomes of our actions are uncertain. It goes on to address model uncertainty, when we do not start with a known model and must learn how to act through interaction with the environment; state uncertainty, in which we do not know the current state of the environment due to imperfect perceptual information; and decision contexts involving multiple agents. The book focuses primarily on planning and reinforcement learning, although some of the techniques presented draw on elements of supervised learning and optimization. Algorithms are implemented in the Julia programming language. Figures, examples, and exercises convey the intuition behind the various approaches presented.
Author: Tshilidzi Marwala
Publisher: Springer Nature
ISBN: 9819728274
Category :
Languages : en
Pages : 267
Get Book Here
Book Description
Author: Vasant, Pandian
Publisher: IGI Global
ISBN: 1466672595
Category : Computers
Languages : en
Pages : 913
Get Book Here
Book Description
For decades, optimization methods such as Fuzzy Logic, Artificial Neural Networks, Firefly, Simulated annealing, and Tabu search, have been capable of handling and tackling a wide range of real-world application problems in society and nature. Analysts have turned to these problem-solving techniques in the event during natural disasters and chaotic systems research. The Handbook of Research on Artificial Intelligence Techniques and Algorithms highlights the cutting edge developments in this promising research area. This premier reference work applies Meta-heuristics Optimization (MO) Techniques to real world problems in a variety of fields including business, logistics, computer science, engineering, and government. This work is particularly relevant to researchers, scientists, decision-makers, managers, and practitioners.
Author: Tshilidzi Marwala
Publisher: Springer Nature
ISBN: 9819792517
Category :
Languages : en
Pages : 251
Get Book Here
Book Description
Author: Bhaso Ndzendze
Publisher: World Scientific
ISBN: 9811234566
Category : Computers
Languages : en
Pages : 190
Get Book Here
Book Description
Artificial Intelligence and Emerging Technologies in International Relations explores the geopolitics between technology and international relations. Through a focus on war, trade, investment flows, diplomacy, regional integration and development cooperation, this book takes a holistic perspective to examine the origins of technology, analysing its current manifestations in the contemporary world. The authors present the possible future roles of artificial intelligence (AI) and other emerging technologies (including blockchain, 3D printing, 5G connectivity and the Internet of Things) in the context of global arena.This book is essential reading to all who seek to understand the reality of the inequitable distribution of these game-changing technologies that are shaping the world. Research questions as well as some policy options for the developing world are explored and the authors make the case for cooperation by the international community as we enter the fourth industrial revolution.
Author: Warren B. Powell
Publisher: John Wiley & Sons
ISBN: 1119815037
Category : Mathematics
Languages : en
Pages : 1090
Get Book Here
Book Description
REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.
Author: Andriy Burkov
Publisher:
ISBN: 9781999579500
Category : Machine learning
Languages : en
Pages : 141
Get Book Here
Book Description
Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you a good feel of more advanced topics to pursue.