Author: Noughabi, Elham Akhond Zadeh
Publisher: IGI Global
ISBN: 1522525165
Category : Computers
Languages : en
Pages : 574
Book Description
Data science has always been an effective way of extracting knowledge and insights from information in various forms. One industry that can utilize the benefits from the advances in data science is the healthcare field. The Handbook of Research on Data Science for Effective Healthcare Practice and Administration is a critical reference source that overviews the state of data analysis as it relates to current practices in the health sciences field. Covering innovative topics such as linear programming, simulation modeling, network theory, and predictive analytics, this publication is recommended for all healthcare professionals, graduate students, engineers, and researchers that are seeking to expand their knowledge of efficient techniques for information analysis in the healthcare professions.
Handbook of Research on Data Science for Effective Healthcare Practice and Administration
Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning
Author: Rani, Geeta
Publisher: IGI Global
ISBN: 1799827437
Category : Medical
Languages : en
Pages : 586
Book Description
By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.
Publisher: IGI Global
ISBN: 1799827437
Category : Medical
Languages : en
Pages : 586
Book Description
By applying data analytics techniques and machine learning algorithms to predict disease, medical practitioners can more accurately diagnose and treat patients. However, researchers face problems in identifying suitable algorithms for pre-processing, transformations, and the integration of clinical data in a single module, as well as seeking different ways to build and evaluate models. The Handbook of Research on Disease Prediction Through Data Analytics and Machine Learning is a pivotal reference source that explores the application of algorithms to making disease predictions through the identification of symptoms and information retrieval from images such as MRIs, ECGs, EEGs, etc. Highlighting a wide range of topics including clinical decision support systems, biomedical image analysis, and prediction models, this book is ideally designed for clinicians, physicians, programmers, computer engineers, IT specialists, data analysts, hospital administrators, researchers, academicians, and graduate and post-graduate students.
Healthcare Interoperability Standards Compliance Handbook
Author: Frank Oemig
Publisher: Springer
ISBN: 3319448390
Category : Medical
Languages : en
Pages : 696
Book Description
This book focuses on the development and use of interoperability standards related to healthcare information technology (HIT) and provides in-depth discussion of the associated essential aspects. The book explains the principles of conformance, examining how to improve the content of healthcare data exchange standards (including HL7 v2.x, V3/CDA, FHIR, CTS2, DICOM, EDIFACT, and ebXML), the rigor of conformance testing, and the interoperability capabilities of healthcare applications for the benefit of healthcare professionals who use HIT, developers of HIT applications, and healthcare consumers who aspire to be recipients of safe and effective health services facilitated through meaningful use of well-designed HIT. Readers will understand the common terms interoperability, conformance, compliance and compatibility, and be prepared to design and implement their own complex interoperable healthcare information system. Chapters address the practical aspects of the subject matter to enable application of previously theoretical concepts. The book provides real-world, concrete examples to explain how to apply the information, and includes many diagrams to illustrate relationships of entities and concepts described in the text. Designed for professionals and practitioners, this book is appropriate for implementers and developers of HIT, technical staff of information technology vendors participating in the development of standards and profiling initiatives, informatics professionals who design conformance testing tools, staff of information technology departments in healthcare institutions, and experts involved in standards development. Healthcare providers and leadership of provider organizations seeking a better understanding of conformance, interoperability, and IT certification processes will benefit from this book, as will students studying healthcare information technology.
Publisher: Springer
ISBN: 3319448390
Category : Medical
Languages : en
Pages : 696
Book Description
This book focuses on the development and use of interoperability standards related to healthcare information technology (HIT) and provides in-depth discussion of the associated essential aspects. The book explains the principles of conformance, examining how to improve the content of healthcare data exchange standards (including HL7 v2.x, V3/CDA, FHIR, CTS2, DICOM, EDIFACT, and ebXML), the rigor of conformance testing, and the interoperability capabilities of healthcare applications for the benefit of healthcare professionals who use HIT, developers of HIT applications, and healthcare consumers who aspire to be recipients of safe and effective health services facilitated through meaningful use of well-designed HIT. Readers will understand the common terms interoperability, conformance, compliance and compatibility, and be prepared to design and implement their own complex interoperable healthcare information system. Chapters address the practical aspects of the subject matter to enable application of previously theoretical concepts. The book provides real-world, concrete examples to explain how to apply the information, and includes many diagrams to illustrate relationships of entities and concepts described in the text. Designed for professionals and practitioners, this book is appropriate for implementers and developers of HIT, technical staff of information technology vendors participating in the development of standards and profiling initiatives, informatics professionals who design conformance testing tools, staff of information technology departments in healthcare institutions, and experts involved in standards development. Healthcare providers and leadership of provider organizations seeking a better understanding of conformance, interoperability, and IT certification processes will benefit from this book, as will students studying healthcare information technology.
Healthcare Data Analytics
Author: Chandan K. Reddy
Publisher: CRC Press
ISBN: 148223212X
Category : Business & Economics
Languages : en
Pages : 756
Book Description
At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available
Publisher: CRC Press
ISBN: 148223212X
Category : Business & Economics
Languages : en
Pages : 756
Book Description
At the intersection of computer science and healthcare, data analytics has emerged as a promising tool for solving problems across many healthcare-related disciplines. Supplying a comprehensive overview of recent healthcare analytics research, Healthcare Data Analytics provides a clear understanding of the analytical techniques currently available
Handbook of Data Science Approaches for Biomedical Engineering
Author: Valentina Emilia Balas
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Handbook of Healthcare Analytics
Author: Tinglong Dai
Publisher: John Wiley & Sons
ISBN: 1119300959
Category : Business & Economics
Languages : en
Pages : 476
Book Description
How can analytics scholars and healthcare professionals access the most exciting and important healthcare topics and tools for the 21st century? Editors Tinglong Dai and Sridhar Tayur, aided by a team of internationally acclaimed experts, have curated this timely volume to help newcomers and seasoned researchers alike to rapidly comprehend a diverse set of thrusts and tools in this rapidly growing cross-disciplinary field. The Handbook covers a wide range of macro-, meso- and micro-level thrusts—such as market design, competing interests, global health, personalized medicine, residential care and concierge medicine, among others—and structures what has been a highly fragmented research area into a coherent scientific discipline. The handbook also provides an easy-to-comprehend introduction to five essential research tools—Markov decision process, game theory and information economics, queueing games, econometric methods, and data science—by illustrating their uses and applicability on examples from diverse healthcare settings, thus connecting tools with thrusts. The primary audience of the Handbook includes analytics scholars interested in healthcare and healthcare practitioners interested in analytics. This Handbook: Instills analytics scholars with a way of thinking that incorporates behavioral, incentive, and policy considerations in various healthcare settings. This change in perspective—a shift in gaze away from narrow, local and one-off operational improvement efforts that do not replicate, scale or remain sustainable—can lead to new knowledge and innovative solutions that healthcare has been seeking so desperately. Facilitates collaboration between healthcare experts and analytics scholar to frame and tackle their pressing concerns through appropriate modern mathematical tools designed for this very purpose. The handbook is designed to be accessible to the independent reader, and it may be used in a variety of settings, from a short lecture series on specific topics to a semester-long course.
Publisher: John Wiley & Sons
ISBN: 1119300959
Category : Business & Economics
Languages : en
Pages : 476
Book Description
How can analytics scholars and healthcare professionals access the most exciting and important healthcare topics and tools for the 21st century? Editors Tinglong Dai and Sridhar Tayur, aided by a team of internationally acclaimed experts, have curated this timely volume to help newcomers and seasoned researchers alike to rapidly comprehend a diverse set of thrusts and tools in this rapidly growing cross-disciplinary field. The Handbook covers a wide range of macro-, meso- and micro-level thrusts—such as market design, competing interests, global health, personalized medicine, residential care and concierge medicine, among others—and structures what has been a highly fragmented research area into a coherent scientific discipline. The handbook also provides an easy-to-comprehend introduction to five essential research tools—Markov decision process, game theory and information economics, queueing games, econometric methods, and data science—by illustrating their uses and applicability on examples from diverse healthcare settings, thus connecting tools with thrusts. The primary audience of the Handbook includes analytics scholars interested in healthcare and healthcare practitioners interested in analytics. This Handbook: Instills analytics scholars with a way of thinking that incorporates behavioral, incentive, and policy considerations in various healthcare settings. This change in perspective—a shift in gaze away from narrow, local and one-off operational improvement efforts that do not replicate, scale or remain sustainable—can lead to new knowledge and innovative solutions that healthcare has been seeking so desperately. Facilitates collaboration between healthcare experts and analytics scholar to frame and tackle their pressing concerns through appropriate modern mathematical tools designed for this very purpose. The handbook is designed to be accessible to the independent reader, and it may be used in a variety of settings, from a short lecture series on specific topics to a semester-long course.
Handbook of Artificial Intelligence in Healthcare
Author: Chee-Peng Lim
Publisher:
ISBN: 9783030791629
Category :
Languages : en
Pages : 0
Book Description
This handbook on Artificial Intelligence (AI) in healthcare consists of two volumes. The first volume is dedicated to advances and applications of AI methodologies in specific healthcare problems, while the second volume is concerned with general practicality issues and challenges and future prospects in the healthcare context. The advent of digital and computing technologies has created a surge in the development of AI methodologies and their penetration to a variety of activities in our daily lives in recent years. Indeed, researchers and practitioners have designed and developed a variety of AI-based systems to help advance health and well-being of humans. In this first volume, we present a number of latest studies in AI-based tools and techniques from two broad categories, viz., medical signal, image, and video processing as well as healthcare information and data analytics in Part 1 and Part 2, respectively. These selected studies offer readers practical knowledge and understanding pertaining to the recent advances and applications of AI in the healthcare sector.
Publisher:
ISBN: 9783030791629
Category :
Languages : en
Pages : 0
Book Description
This handbook on Artificial Intelligence (AI) in healthcare consists of two volumes. The first volume is dedicated to advances and applications of AI methodologies in specific healthcare problems, while the second volume is concerned with general practicality issues and challenges and future prospects in the healthcare context. The advent of digital and computing technologies has created a surge in the development of AI methodologies and their penetration to a variety of activities in our daily lives in recent years. Indeed, researchers and practitioners have designed and developed a variety of AI-based systems to help advance health and well-being of humans. In this first volume, we present a number of latest studies in AI-based tools and techniques from two broad categories, viz., medical signal, image, and video processing as well as healthcare information and data analytics in Part 1 and Part 2, respectively. These selected studies offer readers practical knowledge and understanding pertaining to the recent advances and applications of AI in the healthcare sector.
Handbook on Intelligent Healthcare Analytics
Author: A. Jaya
Publisher: John Wiley & Sons
ISBN: 1119792533
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
HANDBOOK OF INTELLIGENT HEALTHCARE ANALYTICS The book explores the various recent tools and techniques used for deriving knowledge from healthcare data analytics for researchers and practitioners. The power of healthcare data analytics is being increasingly used in the industry. Advanced analytics techniques are used against large data sets to uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful information. A Handbook on Intelligent Healthcare Analytics covers both the theory and application of the tools, techniques, and algorithms for use in big data in healthcare and clinical research. It provides the most recent research findings to derive knowledge using big data analytics, which helps to analyze huge amounts of real-time healthcare data, the analysis of which can provide further insights in terms of procedural, technical, medical, and other types of improvements in healthcare. In addition, the reader will find in this Handbook: Innovative hybrid machine learning and deep learning techniques applied in various healthcare data sets, as well as various kinds of machine learning algorithms existing such as supervised, unsupervised, semi-supervised, reinforcement learning, and guides how readers can implement the Python environment for machine learning; An exploration of predictive analytics in healthcare; The various challenges for smart healthcare, including privacy, confidentiality, authenticity, loss of information, attacks, etc., that create a new burden for providers to maintain compliance with healthcare data security. In addition, this book also explores various sources of personalized healthcare data and the commercial platforms for healthcare data analytics. Audience Healthcare professionals, researchers, and practitioners who wish to figure out the core concepts of smart healthcare applications and the innovative methods and technologies used in healthcare will all benefit from this book.
Publisher: John Wiley & Sons
ISBN: 1119792533
Category : Technology & Engineering
Languages : en
Pages : 448
Book Description
HANDBOOK OF INTELLIGENT HEALTHCARE ANALYTICS The book explores the various recent tools and techniques used for deriving knowledge from healthcare data analytics for researchers and practitioners. The power of healthcare data analytics is being increasingly used in the industry. Advanced analytics techniques are used against large data sets to uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful information. A Handbook on Intelligent Healthcare Analytics covers both the theory and application of the tools, techniques, and algorithms for use in big data in healthcare and clinical research. It provides the most recent research findings to derive knowledge using big data analytics, which helps to analyze huge amounts of real-time healthcare data, the analysis of which can provide further insights in terms of procedural, technical, medical, and other types of improvements in healthcare. In addition, the reader will find in this Handbook: Innovative hybrid machine learning and deep learning techniques applied in various healthcare data sets, as well as various kinds of machine learning algorithms existing such as supervised, unsupervised, semi-supervised, reinforcement learning, and guides how readers can implement the Python environment for machine learning; An exploration of predictive analytics in healthcare; The various challenges for smart healthcare, including privacy, confidentiality, authenticity, loss of information, attacks, etc., that create a new burden for providers to maintain compliance with healthcare data security. In addition, this book also explores various sources of personalized healthcare data and the commercial platforms for healthcare data analytics. Audience Healthcare professionals, researchers, and practitioners who wish to figure out the core concepts of smart healthcare applications and the innovative methods and technologies used in healthcare will all benefit from this book.
Handbook of Healthcare Analytics
Author: Tinglong Dai
Publisher: John Wiley & Sons
ISBN: 1119300940
Category : Business & Economics
Languages : en
Pages : 482
Book Description
How can analytics scholars and healthcare professionals access the most exciting and important healthcare topics and tools for the 21st century? Editors Tinglong Dai and Sridhar Tayur, aided by a team of internationally acclaimed experts, have curated this timely volume to help newcomers and seasoned researchers alike to rapidly comprehend a diverse set of thrusts and tools in this rapidly growing cross-disciplinary field. The Handbook covers a wide range of macro-, meso- and micro-level thrusts—such as market design, competing interests, global health, personalized medicine, residential care and concierge medicine, among others—and structures what has been a highly fragmented research area into a coherent scientific discipline. The handbook also provides an easy-to-comprehend introduction to five essential research tools—Markov decision process, game theory and information economics, queueing games, econometric methods, and data science—by illustrating their uses and applicability on examples from diverse healthcare settings, thus connecting tools with thrusts. The primary audience of the Handbook includes analytics scholars interested in healthcare and healthcare practitioners interested in analytics. This Handbook: Instills analytics scholars with a way of thinking that incorporates behavioral, incentive, and policy considerations in various healthcare settings. This change in perspective—a shift in gaze away from narrow, local and one-off operational improvement efforts that do not replicate, scale or remain sustainable—can lead to new knowledge and innovative solutions that healthcare has been seeking so desperately. Facilitates collaboration between healthcare experts and analytics scholar to frame and tackle their pressing concerns through appropriate modern mathematical tools designed for this very purpose. The handbook is designed to be accessible to the independent reader, and it may be used in a variety of settings, from a short lecture series on specific topics to a semester-long course.
Publisher: John Wiley & Sons
ISBN: 1119300940
Category : Business & Economics
Languages : en
Pages : 482
Book Description
How can analytics scholars and healthcare professionals access the most exciting and important healthcare topics and tools for the 21st century? Editors Tinglong Dai and Sridhar Tayur, aided by a team of internationally acclaimed experts, have curated this timely volume to help newcomers and seasoned researchers alike to rapidly comprehend a diverse set of thrusts and tools in this rapidly growing cross-disciplinary field. The Handbook covers a wide range of macro-, meso- and micro-level thrusts—such as market design, competing interests, global health, personalized medicine, residential care and concierge medicine, among others—and structures what has been a highly fragmented research area into a coherent scientific discipline. The handbook also provides an easy-to-comprehend introduction to five essential research tools—Markov decision process, game theory and information economics, queueing games, econometric methods, and data science—by illustrating their uses and applicability on examples from diverse healthcare settings, thus connecting tools with thrusts. The primary audience of the Handbook includes analytics scholars interested in healthcare and healthcare practitioners interested in analytics. This Handbook: Instills analytics scholars with a way of thinking that incorporates behavioral, incentive, and policy considerations in various healthcare settings. This change in perspective—a shift in gaze away from narrow, local and one-off operational improvement efforts that do not replicate, scale or remain sustainable—can lead to new knowledge and innovative solutions that healthcare has been seeking so desperately. Facilitates collaboration between healthcare experts and analytics scholar to frame and tackle their pressing concerns through appropriate modern mathematical tools designed for this very purpose. The handbook is designed to be accessible to the independent reader, and it may be used in a variety of settings, from a short lecture series on specific topics to a semester-long course.
Healthcare Analytics
Author: Hui Yang
Publisher: John Wiley & Sons
ISBN: 1119374642
Category : Business & Economics
Languages : en
Pages : 646
Book Description
Features of statistical and operational research methods and tools being used to improve the healthcare industry With a focus on cutting-edge approaches to the quickly growing field of healthcare, Healthcare Analytics: From Data to Knowledge to Healthcare Improvement provides an integrated and comprehensive treatment on recent research advancements in data-driven healthcare analytics in an effort to provide more personalized and smarter healthcare services. Emphasizing data and healthcare analytics from an operational management and statistical perspective, the book details how analytical methods and tools can be utilized to enhance healthcare quality and operational efficiency. Organized into two main sections, Part I features biomedical and health informatics and specifically addresses the analytics of genomic and proteomic data; physiological signals from patient-monitoring systems; data uncertainty in clinical laboratory tests; predictive modeling; disease modeling for sepsis; and the design of cyber infrastructures for early prediction of epidemic events. Part II focuses on healthcare delivery systems, including system advances for transforming clinic workflow and patient care; macro analysis of patient flow distribution; intensive care units; primary care; demand and resource allocation; mathematical models for predicting patient readmission and postoperative outcome; physician–patient interactions; insurance claims; and the role of social media in healthcare. Healthcare Analytics: From Data to Knowledge to Healthcare Improvement also features: • Contributions from well-known international experts who shed light on new approaches in this growing area • Discussions on contemporary methods and techniques to address the handling of rich and large-scale healthcare data as well as the overall optimization of healthcare system operations • Numerous real-world examples and case studies that emphasize the vast potential of statistical and operational research tools and techniques to address the big data environment within the healthcare industry • Plentiful applications that showcase analytical methods and tools tailored for successful healthcare systems modeling and improvement The book is an ideal reference for academics and practitioners in operations research, management science, applied mathematics, statistics, business, industrial and systems engineering, healthcare systems, and economics. Healthcare Analytics: From Data to Knowledge to Healthcare Improvement is also appropriate for graduate-level courses typically offered within operations research, industrial engineering, business, and public health departments.
Publisher: John Wiley & Sons
ISBN: 1119374642
Category : Business & Economics
Languages : en
Pages : 646
Book Description
Features of statistical and operational research methods and tools being used to improve the healthcare industry With a focus on cutting-edge approaches to the quickly growing field of healthcare, Healthcare Analytics: From Data to Knowledge to Healthcare Improvement provides an integrated and comprehensive treatment on recent research advancements in data-driven healthcare analytics in an effort to provide more personalized and smarter healthcare services. Emphasizing data and healthcare analytics from an operational management and statistical perspective, the book details how analytical methods and tools can be utilized to enhance healthcare quality and operational efficiency. Organized into two main sections, Part I features biomedical and health informatics and specifically addresses the analytics of genomic and proteomic data; physiological signals from patient-monitoring systems; data uncertainty in clinical laboratory tests; predictive modeling; disease modeling for sepsis; and the design of cyber infrastructures for early prediction of epidemic events. Part II focuses on healthcare delivery systems, including system advances for transforming clinic workflow and patient care; macro analysis of patient flow distribution; intensive care units; primary care; demand and resource allocation; mathematical models for predicting patient readmission and postoperative outcome; physician–patient interactions; insurance claims; and the role of social media in healthcare. Healthcare Analytics: From Data to Knowledge to Healthcare Improvement also features: • Contributions from well-known international experts who shed light on new approaches in this growing area • Discussions on contemporary methods and techniques to address the handling of rich and large-scale healthcare data as well as the overall optimization of healthcare system operations • Numerous real-world examples and case studies that emphasize the vast potential of statistical and operational research tools and techniques to address the big data environment within the healthcare industry • Plentiful applications that showcase analytical methods and tools tailored for successful healthcare systems modeling and improvement The book is an ideal reference for academics and practitioners in operations research, management science, applied mathematics, statistics, business, industrial and systems engineering, healthcare systems, and economics. Healthcare Analytics: From Data to Knowledge to Healthcare Improvement is also appropriate for graduate-level courses typically offered within operations research, industrial engineering, business, and public health departments.