Author: Valentina Emilia Balas
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Handbook of Data Science Approaches for Biomedical Engineering
Author: Valentina Emilia Balas
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Publisher: Academic Press
ISBN: 0128183195
Category : Science
Languages : en
Pages : 320
Book Description
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. - Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things - Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things - Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more
Handbook of Deep Learning in Biomedical Engineering
Author: Valentina Emilia Balas
Publisher: Academic Press
ISBN: 0128230479
Category : Science
Languages : en
Pages : 322
Book Description
Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography
Publisher: Academic Press
ISBN: 0128230479
Category : Science
Languages : en
Pages : 322
Book Description
Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography
Handbook of Artificial Intelligence in Biomedical Engineering
Author: Saravanan Krishnan
Publisher: CRC Press
ISBN: 100006767X
Category : Computers
Languages : en
Pages : 538
Book Description
Handbook of Artificial Intelligence in Biomedical Engineering focuses on recent AI technologies and applications that provide some very promising solutions and enhanced technology in the biomedical field. Recent advancements in computational techniques, such as machine learning, Internet of Things (IoT), and big data, accelerate the deployment of biomedical devices in various healthcare applications. This volume explores how artificial intelligence (AI) can be applied to these expert systems by mimicking the human expert’s knowledge in order to predict and monitor the health status in real time. The accuracy of the AI systems is drastically increasing by using machine learning, digitized medical data acquisition, wireless medical data communication, and computing infrastructure AI approaches, helping to solve complex issues in the biomedical industry and playing a vital role in future healthcare applications. The volume takes a multidisciplinary perspective of employing these new applications in biomedical engineering, exploring the combination of engineering principles with biological knowledge that contributes to the development of revolutionary and life-saving concepts.
Publisher: CRC Press
ISBN: 100006767X
Category : Computers
Languages : en
Pages : 538
Book Description
Handbook of Artificial Intelligence in Biomedical Engineering focuses on recent AI technologies and applications that provide some very promising solutions and enhanced technology in the biomedical field. Recent advancements in computational techniques, such as machine learning, Internet of Things (IoT), and big data, accelerate the deployment of biomedical devices in various healthcare applications. This volume explores how artificial intelligence (AI) can be applied to these expert systems by mimicking the human expert’s knowledge in order to predict and monitor the health status in real time. The accuracy of the AI systems is drastically increasing by using machine learning, digitized medical data acquisition, wireless medical data communication, and computing infrastructure AI approaches, helping to solve complex issues in the biomedical industry and playing a vital role in future healthcare applications. The volume takes a multidisciplinary perspective of employing these new applications in biomedical engineering, exploring the combination of engineering principles with biological knowledge that contributes to the development of revolutionary and life-saving concepts.
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare
Author: Janmenjoy Nayak
Publisher: Academic Press
ISBN: 0128222611
Category : Science
Languages : en
Pages : 398
Book Description
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. - Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence - Helps readers analyze and do advanced research in specialty healthcare applications - Includes links to websites, videos, articles and other online content to expand and support primary learning objectives
Publisher: Academic Press
ISBN: 0128222611
Category : Science
Languages : en
Pages : 398
Book Description
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. - Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence - Helps readers analyze and do advanced research in specialty healthcare applications - Includes links to websites, videos, articles and other online content to expand and support primary learning objectives
Strategies in Biomedical Data Science
Author: Jay A. Etchings
Publisher: John Wiley & Sons
ISBN: 111925597X
Category : Medical
Languages : en
Pages : 415
Book Description
An essential guide to healthcare data problems, sources, and solutions Strategies in Biomedical Data Science provides medical professionals with much-needed guidance toward managing the increasing deluge of healthcare data. Beginning with a look at our current top-down methodologies, this book demonstrates the ways in which both technological development and more effective use of current resources can better serve both patient and payer. The discussion explores the aggregation of disparate data sources, current analytics and toolsets, the growing necessity of smart bioinformatics, and more as data science and biomedical science grow increasingly intertwined. You'll dig into the unknown challenges that come along with every advance, and explore the ways in which healthcare data management and technology will inform medicine, politics, and research in the not-so-distant future. Real-world use cases and clear examples are featured throughout, and coverage of data sources, problems, and potential mitigations provides necessary insight for forward-looking healthcare professionals. Big Data has been a topic of discussion for some time, with much attention focused on problems and management issues surrounding truly staggering amounts of data. This book offers a lifeline through the tsunami of healthcare data, to help the medical community turn their data management problem into a solution. Consider the data challenges personalized medicine entails Explore the available advanced analytic resources and tools Learn how bioinformatics as a service is quickly becoming reality Examine the future of IOT and the deluge of personal device data The sheer amount of healthcare data being generated will only increase as both biomedical research and clinical practice trend toward individualized, patient-specific care. Strategies in Biomedical Data Science provides expert insight into the kind of robust data management that is becoming increasingly critical as healthcare evolves.
Publisher: John Wiley & Sons
ISBN: 111925597X
Category : Medical
Languages : en
Pages : 415
Book Description
An essential guide to healthcare data problems, sources, and solutions Strategies in Biomedical Data Science provides medical professionals with much-needed guidance toward managing the increasing deluge of healthcare data. Beginning with a look at our current top-down methodologies, this book demonstrates the ways in which both technological development and more effective use of current resources can better serve both patient and payer. The discussion explores the aggregation of disparate data sources, current analytics and toolsets, the growing necessity of smart bioinformatics, and more as data science and biomedical science grow increasingly intertwined. You'll dig into the unknown challenges that come along with every advance, and explore the ways in which healthcare data management and technology will inform medicine, politics, and research in the not-so-distant future. Real-world use cases and clear examples are featured throughout, and coverage of data sources, problems, and potential mitigations provides necessary insight for forward-looking healthcare professionals. Big Data has been a topic of discussion for some time, with much attention focused on problems and management issues surrounding truly staggering amounts of data. This book offers a lifeline through the tsunami of healthcare data, to help the medical community turn their data management problem into a solution. Consider the data challenges personalized medicine entails Explore the available advanced analytic resources and tools Learn how bioinformatics as a service is quickly becoming reality Examine the future of IOT and the deluge of personal device data The sheer amount of healthcare data being generated will only increase as both biomedical research and clinical practice trend toward individualized, patient-specific care. Strategies in Biomedical Data Science provides expert insight into the kind of robust data management that is becoming increasingly critical as healthcare evolves.
Nature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems
Author: Kose, Utku
Publisher: IGI Global
ISBN: 1522547703
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Technological tools and computational techniques have enhanced the healthcare industry. These advancements have led to significant progress and novel opportunities for biomedical engineering. Nature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems is a pivotal reference source for emerging scholarly research on trends and techniques in the utilization of nature-inspired approaches in biomedical engineering. Featuring extensive coverage on relevant areas such as artificial intelligence, clinical decision support systems, and swarm intelligence, this publication is an ideal resource for medical practitioners, professionals, students, engineers, and researchers interested in the latest developments in biomedical technologies.
Publisher: IGI Global
ISBN: 1522547703
Category : Technology & Engineering
Languages : en
Pages : 411
Book Description
Technological tools and computational techniques have enhanced the healthcare industry. These advancements have led to significant progress and novel opportunities for biomedical engineering. Nature-Inspired Intelligent Techniques for Solving Biomedical Engineering Problems is a pivotal reference source for emerging scholarly research on trends and techniques in the utilization of nature-inspired approaches in biomedical engineering. Featuring extensive coverage on relevant areas such as artificial intelligence, clinical decision support systems, and swarm intelligence, this publication is an ideal resource for medical practitioners, professionals, students, engineers, and researchers interested in the latest developments in biomedical technologies.
Proceedings of 2nd International Conference on Mathematical Modeling and Computational Science
Author: Sheng-Lung Peng
Publisher: Springer Nature
ISBN: 9811901821
Category : Technology & Engineering
Languages : en
Pages : 576
Book Description
The conference proceeding of ICMMCS 2021 presents most recent scientific and technological advances in the fields of engineering mathematics and computational science to strengthen the links in the scientific community. It is a collection of high-quality, peer-reviewed research papers presented at the Second International Conference on Mathematical Modeling and Computational Science (ICMMCS 2021), held online during October 29–30, 2021. The topics covered in the book are mathematical logic and foundations, numerical analysis, neural networks, fuzzy set theory, coding theory, higher algebra, number theory, graph theory and combinatory, computation in complex networks, calculus, differential educations and integration, application of soft computing, knowledge engineering, machine learning, artificial intelligence, big data and data analytics, high-performance computing, network and device security, Internet of Things (IoT).
Publisher: Springer Nature
ISBN: 9811901821
Category : Technology & Engineering
Languages : en
Pages : 576
Book Description
The conference proceeding of ICMMCS 2021 presents most recent scientific and technological advances in the fields of engineering mathematics and computational science to strengthen the links in the scientific community. It is a collection of high-quality, peer-reviewed research papers presented at the Second International Conference on Mathematical Modeling and Computational Science (ICMMCS 2021), held online during October 29–30, 2021. The topics covered in the book are mathematical logic and foundations, numerical analysis, neural networks, fuzzy set theory, coding theory, higher algebra, number theory, graph theory and combinatory, computation in complex networks, calculus, differential educations and integration, application of soft computing, knowledge engineering, machine learning, artificial intelligence, big data and data analytics, high-performance computing, network and device security, Internet of Things (IoT).
Multimodal Biometric Systems
Author: Rashmi Gupta
Publisher: CRC Press
ISBN: 1000453774
Category : Computers
Languages : en
Pages : 167
Book Description
Many governments around the world are calling for the use of biometric systems to provide crucial societal functions, consequently making it an urgent area for action. The current performance of some biometric systems in terms of their error rates, robustness, and system security may prove to be inadequate for large-scale applications to process millions of users at a high rate of throughput. This book focuses on fusion in biometric systems. It discusses the present level, the limitations, and proposed methods to improve performance. It describes the fundamental concepts, current research, and security-related issues. The book will present a computational perspective, identify challenges, and cover new problem-solving strategies, offering solved problems and case studies to help with reader comprehension and deep understanding. This book is written for researchers, practitioners, both undergraduate and post-graduate students, and those working in various engineering fields such as Systems Engineering, Computer Science, Information Technology, Electronics, and Communications.
Publisher: CRC Press
ISBN: 1000453774
Category : Computers
Languages : en
Pages : 167
Book Description
Many governments around the world are calling for the use of biometric systems to provide crucial societal functions, consequently making it an urgent area for action. The current performance of some biometric systems in terms of their error rates, robustness, and system security may prove to be inadequate for large-scale applications to process millions of users at a high rate of throughput. This book focuses on fusion in biometric systems. It discusses the present level, the limitations, and proposed methods to improve performance. It describes the fundamental concepts, current research, and security-related issues. The book will present a computational perspective, identify challenges, and cover new problem-solving strategies, offering solved problems and case studies to help with reader comprehension and deep understanding. This book is written for researchers, practitioners, both undergraduate and post-graduate students, and those working in various engineering fields such as Systems Engineering, Computer Science, Information Technology, Electronics, and Communications.
Handbook of Deep Learning in Biomedical Engineering and Health Informatics
Author: Golden Julie
Publisher:
ISBN: 9781774638170
Category :
Languages : en
Pages :
Book Description
"This new volume discusses state-of-the-art deep learning techniques and approaches that can be applied in biomedical systems and health informatics. Deep learning in the biomedical field is an effective method of collecting and analyzing data that can be used for the accurate diagnosis of disease. This volume delves into a variety of applications, techniques, algorithms, platforms, and tools used in this area, such as image segmentation, classification, registration, and computer-aided analysis. The editors proceed on the principle that accurate diagnosis of disease depends on image acquisition and interpretation. There are many methods to get high resolution radiological images, but we are still lacking in automated image interpretation. Currently deep learning techniques are providing a feasible solution for automatic diagnosis of disease with good accuracy. Analyzing clinical data using deep learning techniques enables clinicians to diagnose diseases at an early stage and treat the patients more effectively. Chapters explore such approaches as deep learning algorithms, convolutional neural networks and recurrent neural network architecture, image stitching techniques, deep RNN architectures, and more. The volume also depicts how deep learning techniques can be applied for medical diagnostics of several specific health scenarios, such as cancer, COVID-19, acute neurocutaneous syndrome, cardiovascular and neuro diseases, skin lesions and skin cancer, etc. Key features: Introduces important recent technological advancements in the field Describes the various techniques, platforms, and tools used in biomedical deep learning systems Includes informative case studies that help to explain the new technologies Handbook of Deep Learning in Biomedical Engineering and Health Informatics provides a thorough exploration of biomedical systems applied with deep learning techniques and will provide valuable information for researchers, medical and industry practitioners, academicians, and students"--
Publisher:
ISBN: 9781774638170
Category :
Languages : en
Pages :
Book Description
"This new volume discusses state-of-the-art deep learning techniques and approaches that can be applied in biomedical systems and health informatics. Deep learning in the biomedical field is an effective method of collecting and analyzing data that can be used for the accurate diagnosis of disease. This volume delves into a variety of applications, techniques, algorithms, platforms, and tools used in this area, such as image segmentation, classification, registration, and computer-aided analysis. The editors proceed on the principle that accurate diagnosis of disease depends on image acquisition and interpretation. There are many methods to get high resolution radiological images, but we are still lacking in automated image interpretation. Currently deep learning techniques are providing a feasible solution for automatic diagnosis of disease with good accuracy. Analyzing clinical data using deep learning techniques enables clinicians to diagnose diseases at an early stage and treat the patients more effectively. Chapters explore such approaches as deep learning algorithms, convolutional neural networks and recurrent neural network architecture, image stitching techniques, deep RNN architectures, and more. The volume also depicts how deep learning techniques can be applied for medical diagnostics of several specific health scenarios, such as cancer, COVID-19, acute neurocutaneous syndrome, cardiovascular and neuro diseases, skin lesions and skin cancer, etc. Key features: Introduces important recent technological advancements in the field Describes the various techniques, platforms, and tools used in biomedical deep learning systems Includes informative case studies that help to explain the new technologies Handbook of Deep Learning in Biomedical Engineering and Health Informatics provides a thorough exploration of biomedical systems applied with deep learning techniques and will provide valuable information for researchers, medical and industry practitioners, academicians, and students"--
Smart Healthcare Analytics: State of the Art
Author: Prasant Kumar Pattnaik
Publisher: Springer Nature
ISBN: 9811653046
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This edited book helps researchers and practitioners to understand e-health, m-healthcare architecture through IoT and the state of the art in IoT counter measures. This book provides a comprehensive discussion on a functional framework for IoT-based healthcare systems, intelligent medicine box, RFID technology, HMI, cognitive interpretation, BCI, remote health monitoring systems, wearable sensors, WBAN, healthcare analytics, machine learning (ML) techniques for IoT-enabled healthcare services, security and privacy issues in IoT-based healthcare monitoring systems. The book discusses integration of IoT with big data and cloud computing for solving several real-time problems by the use of smart healthcare applications. In these applications, the cloud computing provides a common workplace for IoT and big data, big data provides data analytics technology and IoT provides the source of data. It serves as a reference resource for researchers and practitioners in academia and industry.
Publisher: Springer Nature
ISBN: 9811653046
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
This edited book helps researchers and practitioners to understand e-health, m-healthcare architecture through IoT and the state of the art in IoT counter measures. This book provides a comprehensive discussion on a functional framework for IoT-based healthcare systems, intelligent medicine box, RFID technology, HMI, cognitive interpretation, BCI, remote health monitoring systems, wearable sensors, WBAN, healthcare analytics, machine learning (ML) techniques for IoT-enabled healthcare services, security and privacy issues in IoT-based healthcare monitoring systems. The book discusses integration of IoT with big data and cloud computing for solving several real-time problems by the use of smart healthcare applications. In these applications, the cloud computing provides a common workplace for IoT and big data, big data provides data analytics technology and IoT provides the source of data. It serves as a reference resource for researchers and practitioners in academia and industry.