Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control

Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control PDF Author: Piermarco Cannarsa
Publisher: Springer Science & Business Media
ISBN: 0817643362
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
* A comprehensive and systematic exposition of the properties of semiconcave functions and their various applications, particularly to optimal control problems, by leading experts in the field * A central role in the present work is reserved for the study of singularities * Graduate students and researchers in optimal control, the calculus of variations, and PDEs will find this book useful as a reference work on modern dynamic programming for nonlinear control systems

Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control

Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control PDF Author: Piermarco Cannarsa
Publisher: Springer Science & Business Media
ISBN: 0817643362
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
* A comprehensive and systematic exposition of the properties of semiconcave functions and their various applications, particularly to optimal control problems, by leading experts in the field * A central role in the present work is reserved for the study of singularities * Graduate students and researchers in optimal control, the calculus of variations, and PDEs will find this book useful as a reference work on modern dynamic programming for nonlinear control systems

Hamilton-Jacobi Equations

Hamilton-Jacobi Equations PDF Author: Hung V. Tran
Publisher:
ISBN: 9781470465544
Category : Electronic books
Languages : en
Pages :

Get Book Here

Book Description
This book gives an extensive survey of many important topics in the theory of Hamilton–Jacobi equations with particular emphasis on modern approaches and viewpoints. Firstly, the basic well-posedness theory of viscosity solutions for first-order Hamilton–Jacobi equations is covered. Then, the homogenization theory, a very active research topic since the late 1980s but not covered in any standard textbook, is discussed in depth. Afterwards, dynamical properties of solutions, the Aubry–Mather theory, and weak Kolmogorov–Arnold–Moser (KAM) theory are studied. Both dynamical and PDE approaches are introduced to investigate these theories. Connections between homogenization, dynamical aspects, and the optimal rate of convergence in homogenization theory are given as well. The book is self-contained and is useful for a course or for references. It can also serve as a gentle introductory reference to the homogenization theory.

Generalized Solutions of Hamilton-Jacobi Equations

Generalized Solutions of Hamilton-Jacobi Equations PDF Author: Pierre-Louis Lions
Publisher: Pitman Publishing
ISBN:
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
This volume contains a complete and self-contained treatment of Hamilton-Jacobi equations. The author gives a new presentation of classical methods and of the relations between Hamilton-Jacobi equations and other fields. This complete treatment of both classical and recent aspects of the subject is presented in such a way that it requires only elementary notions of analysis and partial differential equations.

Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations

Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations PDF Author: Maurizio Falcone
Publisher: SIAM
ISBN: 161197304X
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This largely self-contained book provides a unified framework of semi-Lagrangian strategy for the approximation of hyperbolic PDEs, with a special focus on Hamilton-Jacobi equations. The authors provide a rigorous discussion of the theory of viscosity solutions and the concepts underlying the construction and analysis of difference schemes; they then proceed to high-order semi-Lagrangian schemes and their applications to problems in fluid dynamics, front propagation, optimal control, and image processing. The developments covered in the text and the references come from a wide range of literature.

Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications

Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications PDF Author: Yves Achdou
Publisher: Springer
ISBN: 3642364330
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
These Lecture Notes contain the material relative to the courses given at the CIME summer school held in Cetraro, Italy from August 29 to September 3, 2011. The topic was "Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications". The courses dealt mostly with the following subjects: first order and second order Hamilton-Jacobi-Bellman equations, properties of viscosity solutions, asymptotic behaviors, mean field games, approximation and numerical methods, idempotent analysis. The content of the courses ranged from an introduction to viscosity solutions to quite advanced topics, at the cutting edge of research in the field. We believe that they opened perspectives on new and delicate issues. These lecture notes contain four contributions by Yves Achdou (Finite Difference Methods for Mean Field Games), Guy Barles (An Introduction to the Theory of Viscosity Solutions for First-order Hamilton-Jacobi Equations and Applications), Hitoshi Ishii (A Short Introduction to Viscosity Solutions and the Large Time Behavior of Solutions of Hamilton-Jacobi Equations) and Grigory Litvinov (Idempotent/Tropical Analysis, the Hamilton-Jacobi and Bellman Equations).

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations PDF Author: Martino Bardi
Publisher: Springer Science & Business Media
ISBN: 0817647554
Category : Science
Languages : en
Pages : 588

Get Book Here

Book Description
This softcover book is a self-contained account of the theory of viscosity solutions for first-order partial differential equations of Hamilton–Jacobi type and its interplay with Bellman’s dynamic programming approach to optimal control and differential games. It will be of interest to scientists involved in the theory of optimal control of deterministic linear and nonlinear systems. The work may be used by graduate students and researchers in control theory both as an introductory textbook and as an up-to-date reference book.

Hamilton-Jacobi-Bellman Equations

Hamilton-Jacobi-Bellman Equations PDF Author: Dante Kalise
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110542714
Category : Mathematics
Languages : en
Pages : 245

Get Book Here

Book Description
Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampère equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton–Jacobi–Bellman equations Improving policies for Hamilton–Jacobi–Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton–Jacobi–Bellman equations based on diagonally implicit symplectic Runge–Kutta methods Numerical solution of the simple Monge–Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton–Jacobi–Bellman equation within the European Union Emission Trading Scheme

Variational Principles in Classical Mechanics

Variational Principles in Classical Mechanics PDF Author: Douglas Cline
Publisher:
ISBN: 9780998837277
Category :
Languages : en
Pages :

Get Book Here

Book Description
Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.

Hamilton-Jacobi Equation: A Global Approach

Hamilton-Jacobi Equation: A Global Approach PDF Author: Benton
Publisher: Academic Press
ISBN: 0080956408
Category : Computers
Languages : en
Pages : 161

Get Book Here

Book Description
Hamilton-Jacobi Equation: A Global Approach

A Student's Guide to Lagrangians and Hamiltonians

A Student's Guide to Lagrangians and Hamiltonians PDF Author: Patrick Hamill
Publisher: Cambridge University Press
ISBN: 1107042887
Category : Mathematics
Languages : en
Pages : 185

Get Book Here

Book Description
A concise treatment of variational techniques, focussing on Lagrangian and Hamiltonian systems, ideal for physics, engineering and mathematics students.