Multifunctional Ferroelectric Materials

Multifunctional Ferroelectric Materials PDF Author: Dipti Ranjan Sahu
Publisher: BoD – Books on Demand
ISBN: 1839689919
Category : Science
Languages : en
Pages : 160

Get Book Here

Book Description
Ferroelectricity is a well-known phenomenon commonly used in scientific and industrial communities. Ferroelectric materials are the building blocks of different devices and technological innovations. This book presents an overview of the basic phenomenon of ferroelectricity and different ferroelectrics and ferroelectric devices, including their theoretical study, synthesis, characterization, and application. Chapters cover such topics as the basics of ferroelectricity, perovskite ferroelectrics and relaxor ferroelectrics, piezoelectricity, and more.

Multifunctional Ferroelectric Materials

Multifunctional Ferroelectric Materials PDF Author: Dipti Ranjan Sahu
Publisher: BoD – Books on Demand
ISBN: 1839689919
Category : Science
Languages : en
Pages : 160

Get Book Here

Book Description
Ferroelectricity is a well-known phenomenon commonly used in scientific and industrial communities. Ferroelectric materials are the building blocks of different devices and technological innovations. This book presents an overview of the basic phenomenon of ferroelectricity and different ferroelectrics and ferroelectric devices, including their theoretical study, synthesis, characterization, and application. Chapters cover such topics as the basics of ferroelectricity, perovskite ferroelectrics and relaxor ferroelectrics, piezoelectricity, and more.

Multifunctional Polycrystalline Ferroelectric Materials

Multifunctional Polycrystalline Ferroelectric Materials PDF Author: Lorena Pardo
Publisher: Springer Science & Business Media
ISBN: 9048128757
Category : Technology & Engineering
Languages : en
Pages : 847

Get Book Here

Book Description
This book presents selected topics on processing and properties of ferroelectric materials that are currently the focus of attention in scientific and technical research. Ferro-piezoelectric ceramics are key materials in devices for many applications, such as automotive, healthcare and non-destructive testing. As they are polycrystalline, non-centrosymmetric materials, their piezoelectricity is induced by the so-called poling process. This is based on the principle of polarization reversal by the action of an electric field that characterizes the ferroelectric materials. This book was born with the aim of increasing the awareness of the multifunctionality of ferroelectric materials among different communities, such as researchers, electronic engineers, end-users and manufacturers, working on and with ferro-piezoelectric ceramic materials and devices which are based on them. The initiative to write this book comes from a well-established group of researchers at the Laboratories of Ferroelectric Materials, Materials Science Institute of Madrid (ICMM-CSIC). This group has been working in different areas concerning thin films and bulk ceramic materials since the mid-1980s. It is a partner of the Network of Excellence on Multifunctional and Integrated Piezoelectric Devices (MIND) of the EC, in which the European Institute of Piezoelectric Materials and Devices has its origin.

Design, Fabrication, and Characterization of Multifunctional Nanomaterials

Design, Fabrication, and Characterization of Multifunctional Nanomaterials PDF Author: Sabu Thomas
Publisher: Elsevier
ISBN: 012820883X
Category : Technology & Engineering
Languages : en
Pages : 610

Get Book Here

Book Description
Design, Fabrication, and Characterization of Multifunctional Nanomaterials covers major techniques for the design, synthesis, and development of multifunctional nanomaterials. The chapters highlight the main characterization techniques, including X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and scanning probe microscopy.The book explores major synthesis methods and functional studies, including: - Brillouin spectroscopy; - Temperature-dependent Raman spectroscopic studies; - Magnetic, ferroelectric, and magneto-electric coupling analysis; - Organ-on-a-chip methods for testing nanomaterials; - Magnetron sputtering techniques; - Pulsed laser deposition techniques; - Positron annihilation spectroscopy to prove defects in nanomaterials; - Electroanalytic techniques. This is an important reference source for materials science students, scientists, and engineers who are looking to increase their understanding of design and fabrication techniques for a range of multifunctional nanomaterials. - Explains the major design and fabrication techniques and processes for a range of multifunctional nanomaterials; - Demonstrates the design and development of magnetic, ferroelectric, multiferroic, and carbon nanomaterials for electronic applications, energy generation, and storage; - Green synthesis techniques and the development of nanofibers and thin films are also emphasized.

Switching Kinetics and Charge Transport in Organic Ferroelectrics

Switching Kinetics and Charge Transport in Organic Ferroelectrics PDF Author: Tim Cornelissen
Publisher: Linköping University Electronic Press
ISBN: 9179298281
Category : Electronic books
Languages : en
Pages : 94

Get Book Here

Book Description
The continued digitalization of our society means that more and more things are getting connected electronically. Since currently used inorganic electronics are not well suited for these new applications because of costs and environmental issues, organic electronics can play an important role here. These essentially plastic materials are cheap to produce and relatively easy to recycle. Unfortunately, their poor performance has so far hindered widespread application beyond displays. One key component of any electronic device is the memory. For organic electronics several technologies are being investigated that could serve as memories. One of these are the ferroelectrics, materials that have a spontaneous electrical polarization that can be reversed with an electric field. This bistable polarization which shows hysteresis makes these materials excellent candidates for use as memories. This thesis focuses on a specific type of organic ferroelectric, the supramolecular discotics. These materials consist of disk?like molecules that form columns in which all dipolar groups are aligned, giving a macroscopic ferroelectric polarization. Of particular interest are the benzenetricarboxamides (BTA), which are used as a model system for the whole class of discotic ferroelectrics. BTA uses a core?shell architecture which allows for easy modification of the molecular structure and thereby the ferroelectric properties. To gain a deeper understanding of the switching processes in this organic ferroelectric BTA, both microscopic and analytical modeling are used. This is supported by experimental data obtained through electrical characterization. The microscopic model reduces the material to a collection of dipoles and uses electrostatics to calculate the probability that these dipoles flip. These flipping rates are the input for a kinetic Monte Carlo simulation (kMC), which simulates the behavior of the dipoles over time. With this model we simulated three different switching processes on experimental time and length scales: hysteresis loops, spontaneous depolarization, and switching transients. The results of these simulations showed a good agreement with experiments and we can rationalize the obtained parameter dependencies in the framework of thermally activated nucleation limited switching (TA?NLS). The microscopic character of the model allows for a unique insight into the nucleation process of the polarization switching. We found that nucleation happens at different locations for field driven polarization switching as compared to spontaneous polarization switching. Field?driven nucleation happens at the contacts, whereas spontaneous depolarization starts at defects. This means that retention times in disordered ferroelectrics could be improved by reducing the disorder, without affecting the coercive field. Detailed analysis of the nucleation process also revealed a critical nucleation volume that decreases with applied field, which explains the Merz?like field?dependence of the switching time observed in experiments. In parallel to these microscopic simulations we developed an analytical framework based on the theory of TA?NLS. This framework is mainly focused on describing the switching transients of disordered ferroelectrics. It can be combined with concepts of the Preisach model, which considers a non?ideal ferroelectric as a collection of ideal hysterons. We were able to relate these hysterons and the distribution in their up? and down?switching fields to the microscopic structure of the material and use the combined models to explain experimentally observed dispersive switching kinetics. Whereas ferroelectrics on their own could potentially serve as memories, the readout of ferroelectric memories becomes easier if they are combined with semiconductors. We have introduced several molecular materials following the same design principle of a core?shell structure, which uniquely combine ferroelectricity and semiconductivity in one material. The experimental IV?curves of these materials could be described using an asymmetric Marcus hopping model and show their potential as memories. The combination of modeling and experimental work in this thesis thereby provides an increased understanding of organic ferroelectrics, which is crucial for their application as memories.

Nanostructures and Thin Films for Multifunctional Applications

Nanostructures and Thin Films for Multifunctional Applications PDF Author: Ion Tiginyanu
Publisher: Springer
ISBN: 3319301985
Category : Technology & Engineering
Languages : en
Pages : 585

Get Book Here

Book Description
This book is focused on recent advances in the development of thin films for photovoltaic applications, TiO2/WO3 bi-layers for applications with enhanced photo-catalytic properties, nanometer oxide and hydroxide films for anticorrosive coatings, surface passivation in chemical industries, micro- and nanoelectronics, trilayers of metglas and lead free piezoelectrics for magnetic field sensors, current sensors, spintronics, microwave and read/write devices. Diluted ferromagnetic alloy films are also considered for superconducting spintronics based on superconducting spin-valves. Thermal properties of segmented nanowires are analyzed with respect to thermoelectric applications. Recent advances in template production of nanocomposites are also reviewed with particular focus on technologies for template assisted formation of metal nanotubes. Some elements related to abrasive flow machining (AFM), specifically state of the art elements of technological systems and construction of equipment are presented. The book is written for researchers in materials science, nanotechnologies, PhD students and graduate student.

Multifunctional Oxide Heterostructures

Multifunctional Oxide Heterostructures PDF Author: Evgeny Y. Tsymbal
Publisher: OUP Oxford
ISBN: 0191642223
Category : Science
Languages : en
Pages : 416

Get Book Here

Book Description
This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts. The book consists of chapters on some of the key innovations in the field over recent years, including strongly correlated oxide heterostructures, magnetoelectric coupling and multiferroic materials, thermoelectric phenomena, and two-dimensional electron gases at oxide interfaces. The book covers the core principles, describes experimental approaches to fabricate and characterize oxide heterostructures, demonstrates new functional properties of these materials, and provides an overview of novel applications.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 702

Get Book Here

Book Description


Multifunctional Nanocarriers for Contemporary Healthcare Applications

Multifunctional Nanocarriers for Contemporary Healthcare Applications PDF Author: Barkat, Md. Abul
Publisher: IGI Global
ISBN: 1522547827
Category : Technology & Engineering
Languages : en
Pages : 624

Get Book Here

Book Description
Advances in technology permeates every aspect of life, including the healthcare system. Nanotechnology based systems have gained popularity based upon their promise, size, and other characteristics. Multifunctional Nanocarriers for Contemporary Healthcare Applications is a critical academic publication that explores advancements in nanostructured systems, applications of these systems in healthcare, and biomedical applications of these systems. Featuring coverage on a wide range of topics, such as hydrogels, controlled drug delivery systems, and nanomedicine, this book is geared toward researchers, students, and academicians seeking current research on advancements and applications of nanostructured systems in the healthcare industry.

Ferroic Materials Based Technologies

Ferroic Materials Based Technologies PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1394238150
Category : Technology & Engineering
Languages : en
Pages : 356

Get Book Here

Book Description
FERROIC MATERIALS-BASED TECHNOLOGIES The book addresses the prospective, relevant, and original research developments in the ferroelectric, magnetic, and multiferroic fields. Ferroic materials have sparked widespread attention because they represent a broad spectrum of elementary physics and are employed in a plethora of fields, including flexible memory, enormous energy harvesting/storage, spintronic functionalities, spin caloritronics, and a large range of other multi-functional devices. With the application of new ferroic materials, strong room-temperature ferroelectricity with high saturation polarization may be established in ferroelectric materials, and magnetism with significant magnetization can be accomplished in magnetic materials. Furthermore, magnetoelectric interaction between ferroelectric and magnetic orderings is high in multiferroic materials, which could enable a wide range of innovative devices. Magnetic, ferroelectric, and multiferroic 2D materials with ultrathin characteristics above ambient temperature are often expected to enable future miniaturization of electronics beyond Moore’s law for energy-efficient nanodevices. This book addresses the prospective, relevant, and original research developments in the ferroelectric, magnetic, and multiferroic fields. Audience The book will interest materials scientists, physicists, and engineers working in ferroic and multiferroic materials.

Mesoscopic Phenomena in Multifunctional Materials

Mesoscopic Phenomena in Multifunctional Materials PDF Author: Avadh Saxena
Publisher: Springer
ISBN: 3642553753
Category : Technology & Engineering
Languages : en
Pages : 324

Get Book Here

Book Description
A highly coveted objective of modern materials science is to optimize multiple coupled functionalities in the same single phase material and control the cross-response via multiple external fields. One important example of such multi-functionality are multiferroic materials where two or more ferroic properties are intrinsically coupled. They include, among others, the magneto-electric and magneto-structural materials, which are well understood at the nano- and continuum length (and time) scales. The next emerging frontier is to connect these two limiting scales by probing the mesoscale physics of these materials. This book not only attempts to provide this connection but also presents the state-of-the art of the present understanding and potential applications of many related complex multifunctional materials. The main emphasis is on the multiscale bridging of their properties with the aim to discover novel properties and applications in the context of materials by design. This interdisciplinary book serves both graduate students and expert researchers alike.