Growth and Application of Planar III-V Semiconductor Nanowires Grown with MOCVD

Growth and Application of Planar III-V Semiconductor Nanowires Grown with MOCVD PDF Author: Seth A. Fortuna
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The semiconductor nanowire has been widely studied over the past decade and identified as a promising nanotechnology building block with application in photonics and electronics. The flexible bottom-up approach to nanowire growth allows for straightforward fabrication of complex 1D nanostructures with interesting optical, electrical, and mechanical properties. III-V nanowires in particular are useful because of their direct bandgap, high carrier mobility, and ability to form heterojunctions and have been used to make devices such as light-emitting diodes, lasers, and field-effect transistors. However, crystal defects are widely reported for III-V nanowires when grown in the common out-of-plane 111B direction. Furthermore, commercialization of nanowires has been limited by the difficulty of assembling nanowires with predetermined position and alignment on a wafer-scale. In this thesis, planar III-V nanowires are introduced as a low-defect and integratable nanotechnology building block grown with metalorganic chemical vapor deposition. Planar GaAs nanowires grown with gold seed particles self-align along the 110 direction on the (001) GaAs substrate. Transmission electron microscopy reveals that planar GaAs nanowires are nearly free of crystal defects and grow laterally and epitaxially on the substrate surface. The nanowire morphology is shown to be primarily controlled through growth temperature and an ideal growth window of 470 +- 10 °C is identified for planar GaAs nanowires. Extension of the planar growth mode to other materials is demonstrated through growth of planar InAs nanowires. Using a sacrificial layer, the transfer of planar GaAs nanowires onto silicon substrates with control over the alignment and position is presented. A metal-semiconductor field-effect transistor fabricated with a planar GaAs nanowire shows bulk-like low-field electron transport characteristics with high mobility. The aligned planar geometry and excellent material quality of planar III-V nanowires may lead to highly integrated III-V nanophotonics and nanoelectronics.

Growth and Application of Planar III-V Semiconductor Nanowires Grown with MOCVD

Growth and Application of Planar III-V Semiconductor Nanowires Grown with MOCVD PDF Author: Seth A. Fortuna
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The semiconductor nanowire has been widely studied over the past decade and identified as a promising nanotechnology building block with application in photonics and electronics. The flexible bottom-up approach to nanowire growth allows for straightforward fabrication of complex 1D nanostructures with interesting optical, electrical, and mechanical properties. III-V nanowires in particular are useful because of their direct bandgap, high carrier mobility, and ability to form heterojunctions and have been used to make devices such as light-emitting diodes, lasers, and field-effect transistors. However, crystal defects are widely reported for III-V nanowires when grown in the common out-of-plane 111B direction. Furthermore, commercialization of nanowires has been limited by the difficulty of assembling nanowires with predetermined position and alignment on a wafer-scale. In this thesis, planar III-V nanowires are introduced as a low-defect and integratable nanotechnology building block grown with metalorganic chemical vapor deposition. Planar GaAs nanowires grown with gold seed particles self-align along the 110 direction on the (001) GaAs substrate. Transmission electron microscopy reveals that planar GaAs nanowires are nearly free of crystal defects and grow laterally and epitaxially on the substrate surface. The nanowire morphology is shown to be primarily controlled through growth temperature and an ideal growth window of 470 +- 10 °C is identified for planar GaAs nanowires. Extension of the planar growth mode to other materials is demonstrated through growth of planar InAs nanowires. Using a sacrificial layer, the transfer of planar GaAs nanowires onto silicon substrates with control over the alignment and position is presented. A metal-semiconductor field-effect transistor fabricated with a planar GaAs nanowire shows bulk-like low-field electron transport characteristics with high mobility. The aligned planar geometry and excellent material quality of planar III-V nanowires may lead to highly integrated III-V nanophotonics and nanoelectronics.

Growth and Characterization of III-V Compound Semiconductor Nanostructures by Metalorganic Chemical Vapor Deposition

Growth and Characterization of III-V Compound Semiconductor Nanostructures by Metalorganic Chemical Vapor Deposition PDF Author: Ryan S. Dowdy
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Planar 110 GaAs nanowires and quantum dots grown by atmospheric MOCVD have been introduced to non-standard growth conditions such as incorporating Zn and growing them on free-standing suspended films and on 10° off-cut substrates. Zn doped nanowires exhibited periodic notching along the axis of the wire that is dependent on Zn/Ga gas phase molar ratios. Planar nanowires grown on suspended thin films give insight into the mobility of the seed particle and change in growth direction. Nanowires that were grown on the off-cut sample exhibit anti-parallel growth direction changes. Quantum dots are grown on suspended thin films and show preferential growth at certain temperatures. Envisioned nanowire applications include twin-plane superlattices, axial pn-junctions, nanowire lasers, and the modulation of nanowire growth direction against an impeding barrier and varying substrate conditions.

Novel Compound Semiconductor Nanowires

Novel Compound Semiconductor Nanowires PDF Author: Fumitaro Ishikawa
Publisher: CRC Press
ISBN: 9814745774
Category : Science
Languages : en
Pages : 549

Get Book Here

Book Description
One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D–2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.

Advances in III-V Semiconductor Nanowires and Nanodevices

Advances in III-V Semiconductor Nanowires and Nanodevices PDF Author: Jianye Li
Publisher: Bentham Science Publishers
ISBN: 1608050521
Category : Technology & Engineering
Languages : en
Pages : 186

Get Book Here

Book Description
"Semiconductor nanowires exhibit novel electronic and optical properties due to their unique one-dimensional structure and quantum confinement effects. In particular, III-V semiconductor nanowires have been of great scientific and technological interest fo"

Self-seeded II-V Semiconductor Nanowire Growth by Metal-organic Chemical Vapor Deposition (MOCVD)

Self-seeded II-V Semiconductor Nanowire Growth by Metal-organic Chemical Vapor Deposition (MOCVD) PDF Author: Sema Ermez
Publisher:
ISBN:
Category :
Languages : en
Pages : 143

Get Book Here

Book Description
III-V semiconductor epitaxial nanowires have gained significant attention in recent years, as they showcase an opportunity to combine III-V material properties with a non-planar morphology. To date, semiconductor devices have been continuously engineered to realize optoelectronic devices with ever smaller size, higher efficiency, and lower power consumption. However, many device improvements have reached fundamental physical limitations. One way to address these challenges is to adapt a non-planar device structure. Nanowires are onedimensional structures that can be grown on a substrate with epitaxial relationship using traditional vapor deposition techniques such as metal-organic chemical vapor deposition (MOCVD). Therefore, the novelty of non-planar morphology can be achieved using industrial scale high throughput deposition techniques. To realize the full potential of nanowires as building blocks in a range of different devices, growth of nanowire arrays with controlled density, morphology, composition and alignment is necessary. In this thesis, we demonstrate controlled growth of self-seeded III-V binary and ternary nanowires by MOCVD. First, self-seeded binary III-V nanowire growth is demonstrated for gallium (Ga)-seeded gallium arsenide (GaAs) nanowires. High yield of vertical nanowires are grown reproducibly by a two-step approach: in situ deposition of Ga seed particles at high temperatures (500°C - 600°C), followed by GaAs nanowire growth at lower temperatures (420°C - 435°C). The fabricated GaAs nanowires show a single crystalline structure at the base and occasional twin planes along the nanowire growth direction. We develop a growth model based on incorporation and extraction of Ga from seed particle to explain the observed tapering of nanowires. Second, control over the density and diameter of nanowire arrays is achieved by controlling seed deposition conditions. We demonstrate that higher seed deposition temperatures or changing the GaAs substrate orientation from (11 )A to (110) and (11 1)B yield reduced areal density and larger nanowire diameters. Seed deposition temperature affects the surface diffusion of Ga adatoms, whereas substrate orientation affects the nucleation of seed particles due to varied chemical potential of Ga adatoms and surface energies on different surface orientations. Lastly, controlled self-seeded ternary III-V nanowire growth is realized in the case of Ga-seeded GaAs1-xPx nanowire growth on GaAs substrates. Composition control for x = 0 - 0.3 and growth of GaP nanowires are demonstrated by varying group-V precursor percentage. It was found that strain due to lattice mismatch between GaAs substrate and GaAsP nanowires can be released due to nanowire geometry. Cathodoluminescence measurements have shown emission of light in GaAsP band gap energies, confirming the successful growth of nanowires in this ternary material system. The methods developed for self-seeded growth of GaAs and GaAsP nanowires, as well as density and diameter control of self-seeded growth are extendable to other self-seeded III-V nanowire material systems.

Semiconductor Nanowires II: Properties and Applications

Semiconductor Nanowires II: Properties and Applications PDF Author:
Publisher: Academic Press
ISBN: 0128041447
Category : Technology & Engineering
Languages : en
Pages : 424

Get Book Here

Book Description
Semiconductor Nanowires: Part B, and Volume 94 in the Semiconductor and Semimetals series, focuses on semiconductor nanowires. Includes experts contributors who review the most important recent literature Contains a broad view, including examination of semiconductor nanowires

Metalorganic Vapor Phase Epitaxy (MOVPE)

Metalorganic Vapor Phase Epitaxy (MOVPE) PDF Author: Stuart Irvine
Publisher: John Wiley & Sons
ISBN: 1119313015
Category : Technology & Engineering
Languages : en
Pages : 582

Get Book Here

Book Description
Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).

Frontiers In Electronics - Proceedings Of The Workshop On Frontiers In Electronics 2009

Frontiers In Electronics - Proceedings Of The Workshop On Frontiers In Electronics 2009 PDF Author: Sorin Cristoloveanu
Publisher: World Scientific
ISBN: 9814522058
Category : Technology & Engineering
Languages : en
Pages : 241

Get Book Here

Book Description
Frontiers in Electronics is divided into four sections: advanced terahertz and photonics devices; silicon and germanium on insulator and advanced CMOS and MOSHFETs; nanomaterials and nanodevices; and wide band gap technology for high power and UV photonics. This book will be useful for nano-microelectronics scientists, engineers, and visionary research leaders. It is also recommended to graduate students working at the frontiers of the nanoelectronics and microscience.

Wide Band Gap Semiconductor Nanowires 1

Wide Band Gap Semiconductor Nanowires 1 PDF Author: Vincent Consonni
Publisher: John Wiley & Sons
ISBN: 1118984307
Category : Science
Languages : en
Pages : 467

Get Book Here

Book Description
GaN and ZnO nanowires can by grown using a wide variety of methods from physical vapor deposition to wet chemistry for optical devices. This book starts by presenting the similarities and differences between GaN and ZnO materials, as well as the assets and current limitations of nanowires for their use in optical devices, including feasibility and perspectives. It then focuses on the nucleation and growth mechanisms of ZnO and GaN nanowires, grown by various chemical and physical methods. Finally, it describes the formation of nanowire heterostructures applied to optical devices.

Semiconductor Nanowires

Semiconductor Nanowires PDF Author: J Arbiol
Publisher: Elsevier
ISBN: 1782422633
Category : Technology & Engineering
Languages : en
Pages : 573

Get Book Here

Book Description
Semiconductor nanowires promise to provide the building blocks for a new generation of nanoscale electronic and optoelectronic devices. Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications covers advanced materials for nanowires, the growth and synthesis of semiconductor nanowires—including methods such as solution growth, MOVPE, MBE, and self-organization. Characterizing the properties of semiconductor nanowires is covered in chapters describing studies using TEM, SPM, and Raman scattering. Applications of semiconductor nanowires are discussed in chapters focusing on solar cells, battery electrodes, sensors, optoelectronics and biology. Explores a selection of advanced materials for semiconductor nanowires Outlines key techniques for the property assessment and characterization of semiconductor nanowires Covers a broad range of applications across a number of fields