Author: Kristopher Tapp
Publisher: American Mathematical Soc.
ISBN: 1470427222
Category : Mathematics
Languages : en
Pages : 250
Book Description
Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups.
Matrix Groups for Undergraduates
Author: Kristopher Tapp
Publisher: American Mathematical Soc.
ISBN: 1470427222
Category : Mathematics
Languages : en
Pages : 250
Book Description
Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups.
Publisher: American Mathematical Soc.
ISBN: 1470427222
Category : Mathematics
Languages : en
Pages : 250
Book Description
Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups.
Groups for Undergraduates
Author: John Atwell Moody
Publisher: World Scientific
ISBN: 9789810221058
Category : Mathematics
Languages : en
Pages : 184
Book Description
In these lecture notes the student learns basic theorems of the subject (due to Sylow, Burnside, Schur and Frobenius). More importantly, the student learns to use the theorems in various combinations, to discover for himself the groups of reasonably small order. In examples, presentations of the groups of order 1?31 and 33?42 are constructed.Once the groups are presented abstractly, the problem is not done: one needs to know how each abstract group may arise as a group of permutations or matrices. Theorems and techniques of representation theory are given which can do this for any group the student may have constructed in the earlier chapters ? and the student ends up building the actual representations (not only the characters). In a series of examples, which the student may carry further, all the matrix representations are constructed for the groups of order less than 13.For students who are already familiar with homomorphisms, cosets, Lagrange's theorem, and finite abelian groups, the text may be used alone. For any group theory course, at least one text such as this one, containing lots of examples, is strongly recommended.The book is written in a lucid, straightforward style. The subject matter is presented from a student's perspective and constantly demands the student's involvement. Both these strategies are highly appropriate for a book of lecture notes and guarantee the student's understanding of the mathematical concepts.
Publisher: World Scientific
ISBN: 9789810221058
Category : Mathematics
Languages : en
Pages : 184
Book Description
In these lecture notes the student learns basic theorems of the subject (due to Sylow, Burnside, Schur and Frobenius). More importantly, the student learns to use the theorems in various combinations, to discover for himself the groups of reasonably small order. In examples, presentations of the groups of order 1?31 and 33?42 are constructed.Once the groups are presented abstractly, the problem is not done: one needs to know how each abstract group may arise as a group of permutations or matrices. Theorems and techniques of representation theory are given which can do this for any group the student may have constructed in the earlier chapters ? and the student ends up building the actual representations (not only the characters). In a series of examples, which the student may carry further, all the matrix representations are constructed for the groups of order less than 13.For students who are already familiar with homomorphisms, cosets, Lagrange's theorem, and finite abelian groups, the text may be used alone. For any group theory course, at least one text such as this one, containing lots of examples, is strongly recommended.The book is written in a lucid, straightforward style. The subject matter is presented from a student's perspective and constantly demands the student's involvement. Both these strategies are highly appropriate for a book of lecture notes and guarantee the student's understanding of the mathematical concepts.
Topics in Group Theory
Author: Geoff Smith
Publisher: Springer Science & Business Media
ISBN: 1447104617
Category : Mathematics
Languages : en
Pages : 266
Book Description
The theory of groups is simultaneously a branch of abstract algebra and the study of symmetry. Designed for readers approaching the subject for the first time, this book reviews all the essentials. It recaps the basic definitions and results, including Lagranges Theorem, the isomorphism theorems and group actions. Later chapters include material on chain conditions and finiteness conditions, free groups and the theory of presentations. In addition, a novel chapter of "entertainments" demonstrates an assortment of results that can be achieved with the theoretical machinery.
Publisher: Springer Science & Business Media
ISBN: 1447104617
Category : Mathematics
Languages : en
Pages : 266
Book Description
The theory of groups is simultaneously a branch of abstract algebra and the study of symmetry. Designed for readers approaching the subject for the first time, this book reviews all the essentials. It recaps the basic definitions and results, including Lagranges Theorem, the isomorphism theorems and group actions. Later chapters include material on chain conditions and finiteness conditions, free groups and the theory of presentations. In addition, a novel chapter of "entertainments" demonstrates an assortment of results that can be achieved with the theoretical machinery.
Algebra in Action: A Course in Groups, Rings, and Fields
Author: Shahriar Shahriar
Publisher: American Mathematical Soc.
ISBN: 1470428490
Category : Mathematics
Languages : en
Pages : 698
Book Description
This text—based on the author's popular courses at Pomona College—provides a readable, student-friendly, and somewhat sophisticated introduction to abstract algebra. It is aimed at sophomore or junior undergraduates who are seeing the material for the first time. In addition to the usual definitions and theorems, there is ample discussion to help students build intuition and learn how to think about the abstract concepts. The book has over 1300 exercises and mini-projects of varying degrees of difficulty, and, to facilitate active learning and self-study, hints and short answers for many of the problems are provided. There are full solutions to over 100 problems in order to augment the text and to model the writing of solutions. Lattice diagrams are used throughout to visually demonstrate results and proof techniques. The book covers groups, rings, and fields. In group theory, group actions are the unifying theme and are introduced early. Ring theory is motivated by what is needed for solving Diophantine equations, and, in field theory, Galois theory and the solvability of polynomials take center stage. In each area, the text goes deep enough to demonstrate the power of abstract thinking and to convince the reader that the subject is full of unexpected results.
Publisher: American Mathematical Soc.
ISBN: 1470428490
Category : Mathematics
Languages : en
Pages : 698
Book Description
This text—based on the author's popular courses at Pomona College—provides a readable, student-friendly, and somewhat sophisticated introduction to abstract algebra. It is aimed at sophomore or junior undergraduates who are seeing the material for the first time. In addition to the usual definitions and theorems, there is ample discussion to help students build intuition and learn how to think about the abstract concepts. The book has over 1300 exercises and mini-projects of varying degrees of difficulty, and, to facilitate active learning and self-study, hints and short answers for many of the problems are provided. There are full solutions to over 100 problems in order to augment the text and to model the writing of solutions. Lattice diagrams are used throughout to visually demonstrate results and proof techniques. The book covers groups, rings, and fields. In group theory, group actions are the unifying theme and are introduced early. Ring theory is motivated by what is needed for solving Diophantine equations, and, in field theory, Galois theory and the solvability of polynomials take center stage. In each area, the text goes deep enough to demonstrate the power of abstract thinking and to convince the reader that the subject is full of unexpected results.
Groups and Symmetry
Author: Mark A. Armstrong
Publisher: Springer Science & Business Media
ISBN: 1475740344
Category : Mathematics
Languages : en
Pages : 197
Book Description
This is a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Includes more than 300 exercises and approximately 60 illustrations.
Publisher: Springer Science & Business Media
ISBN: 1475740344
Category : Mathematics
Languages : en
Pages : 197
Book Description
This is a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Includes more than 300 exercises and approximately 60 illustrations.
A Mathematician’s Practical Guide to Mentoring Undergraduate Research
Author: Michael Dorff
Publisher: American Mathematical Soc.
ISBN: 147044934X
Category : Education
Languages : en
Pages : 232
Book Description
A Mathematician's Practical Guide to Mentoring Undergraduate Research is a complete how-to manual on starting an undergraduate research program. Readers will find advice on setting appropriate problems, directing student progress, managing group dynamics, obtaining external funding, publishing student results, and a myriad of other relevant issues. The authors have decades of experience and have accumulated knowledge that other mathematicians will find extremely useful.
Publisher: American Mathematical Soc.
ISBN: 147044934X
Category : Education
Languages : en
Pages : 232
Book Description
A Mathematician's Practical Guide to Mentoring Undergraduate Research is a complete how-to manual on starting an undergraduate research program. Readers will find advice on setting appropriate problems, directing student progress, managing group dynamics, obtaining external funding, publishing student results, and a myriad of other relevant issues. The authors have decades of experience and have accumulated knowledge that other mathematicians will find extremely useful.
Matrix Groups
Author: M. L. Curtis
Publisher: Springer Science & Business Media
ISBN: 1461252865
Category : Mathematics
Languages : en
Pages : 222
Book Description
These notes were developed from a course taught at Rice Univ- sity in the spring of 1976 and again at the University of Hawaii in the spring of 1977. It is assumed that the students know some linear algebra and a little about differentiation of vector-valued functions. The idea is to introduce students to some of the concepts of Lie group theory-- all done at the concrete level of matrix groups. As much as we could, we motivated developments as a means of deciding when two matrix groups (with different definitions) are isomorphic. In Chapter I "group" is defined and examples are given; ho- morphism and isomorphism are defined. For a field k denotes the algebra of n x n matrices over k We recall that A E Mn(k) has an inverse if and only if det A ~ 0 , and define the general linear group GL(n,k) We construct the skew-field lli of to operate linearly on llin quaternions and note that for A E Mn(lli) we must operate on the right (since we mUltiply a vector by a scalar n on the left). So we use row vectors for R , en, llin and write xA for the row vector obtained by matrix multiplication. We get a ~omplex-valued determinant function on Mn (11) such that det A ~ 0 guarantees that A has an inverse.
Publisher: Springer Science & Business Media
ISBN: 1461252865
Category : Mathematics
Languages : en
Pages : 222
Book Description
These notes were developed from a course taught at Rice Univ- sity in the spring of 1976 and again at the University of Hawaii in the spring of 1977. It is assumed that the students know some linear algebra and a little about differentiation of vector-valued functions. The idea is to introduce students to some of the concepts of Lie group theory-- all done at the concrete level of matrix groups. As much as we could, we motivated developments as a means of deciding when two matrix groups (with different definitions) are isomorphic. In Chapter I "group" is defined and examples are given; ho- morphism and isomorphism are defined. For a field k denotes the algebra of n x n matrices over k We recall that A E Mn(k) has an inverse if and only if det A ~ 0 , and define the general linear group GL(n,k) We construct the skew-field lli of to operate linearly on llin quaternions and note that for A E Mn(lli) we must operate on the right (since we mUltiply a vector by a scalar n on the left). So we use row vectors for R , en, llin and write xA for the row vector obtained by matrix multiplication. We get a ~omplex-valued determinant function on Mn (11) such that det A ~ 0 guarantees that A has an inverse.
Naive Lie Theory
Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 038778215X
Category : Mathematics
Languages : en
Pages : 230
Book Description
In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).
Publisher: Springer Science & Business Media
ISBN: 038778215X
Category : Mathematics
Languages : en
Pages : 230
Book Description
In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).
A Course on Finite Groups
Author: H.E. Rose
Publisher: Springer Science & Business Media
ISBN: 1848828896
Category : Mathematics
Languages : en
Pages : 314
Book Description
Introduces the richness of group theory to advanced undergraduate and graduate students, concentrating on the finite aspects. Provides a wealth of exercises and problems to support self-study. Additional online resources on more challenging and more specialised topics can be used as extension material for courses, or for further independent study.
Publisher: Springer Science & Business Media
ISBN: 1848828896
Category : Mathematics
Languages : en
Pages : 314
Book Description
Introduces the richness of group theory to advanced undergraduate and graduate students, concentrating on the finite aspects. Provides a wealth of exercises and problems to support self-study. Additional online resources on more challenging and more specialised topics can be used as extension material for courses, or for further independent study.
Matrix Groups
Author: Andrew Baker
Publisher: Springer Science & Business Media
ISBN: 1447101839
Category : Mathematics
Languages : en
Pages : 332
Book Description
This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.
Publisher: Springer Science & Business Media
ISBN: 1447101839
Category : Mathematics
Languages : en
Pages : 332
Book Description
This book offers a first taste of the theory of Lie groups, focusing mainly on matrix groups: closed subgroups of real and complex general linear groups. The first part studies examples and describes classical families of simply connected compact groups. The second section introduces the idea of a lie group and explores the associated notion of a homogeneous space using orbits of smooth actions. The emphasis throughout is on accessibility.