Author: Sigurdur Helgason
Publisher: American Mathematical Soc.
ISBN: 0821826735
Category : Mathematics
Languages : en
Pages : 693
Book Description
This volume, the second of Helgason's impressive three books on Lie groups and the geometry and analysis of symmetric spaces, is an introduction to group-theoretic methods in analysis on spaces with a group action. The first chapter deals with the three two-dimensional spaces of constant curvature, requiring only elementary methods and no Lie theory. It is remarkably accessible and would be suitable for a first-year graduate course. The remainder of the book covers more advanced topics, including the work of Harish-Chandra and others, but especially that of Helgason himself. Indeed, the exposition can be seen as an account of the author's tremendous contributions to the subject.Chapter I deals with modern integral geometry and Radon transforms. The second chapter examines the interconnection between Lie groups and differential operators. Chapter IV develops the theory of spherical functions on semisimple Lie groups with a certain degree of completeness, including a study of Harish-Chandra's $c$-function. The treatment of analysis on compact symmetric spaces (Chapter V) includes some finite-dimensional representation theory for compact Lie groups and Fourier analysis on compact groups. Each chapter ends with exercises (with solutions given at the end of the book!) and historical notes.This book, which is new to the AMS publishing program, is an excellent example of the author's well-known clear and careful writing style. It has become the standard text for the study of spherical functions and invariant differential operators on symmetric spaces. Sigurdur Helgason was awarded the Steele Prize for Groups and Geometric Analysis and the companion volume, ""Differential Geometry, Lie Groups and Symmetric Spaces.""
Groups and Geometric Analysis
Author: Sigurdur Helgason
Publisher: American Mathematical Soc.
ISBN: 0821826735
Category : Mathematics
Languages : en
Pages : 693
Book Description
This volume, the second of Helgason's impressive three books on Lie groups and the geometry and analysis of symmetric spaces, is an introduction to group-theoretic methods in analysis on spaces with a group action. The first chapter deals with the three two-dimensional spaces of constant curvature, requiring only elementary methods and no Lie theory. It is remarkably accessible and would be suitable for a first-year graduate course. The remainder of the book covers more advanced topics, including the work of Harish-Chandra and others, but especially that of Helgason himself. Indeed, the exposition can be seen as an account of the author's tremendous contributions to the subject.Chapter I deals with modern integral geometry and Radon transforms. The second chapter examines the interconnection between Lie groups and differential operators. Chapter IV develops the theory of spherical functions on semisimple Lie groups with a certain degree of completeness, including a study of Harish-Chandra's $c$-function. The treatment of analysis on compact symmetric spaces (Chapter V) includes some finite-dimensional representation theory for compact Lie groups and Fourier analysis on compact groups. Each chapter ends with exercises (with solutions given at the end of the book!) and historical notes.This book, which is new to the AMS publishing program, is an excellent example of the author's well-known clear and careful writing style. It has become the standard text for the study of spherical functions and invariant differential operators on symmetric spaces. Sigurdur Helgason was awarded the Steele Prize for Groups and Geometric Analysis and the companion volume, ""Differential Geometry, Lie Groups and Symmetric Spaces.""
Publisher: American Mathematical Soc.
ISBN: 0821826735
Category : Mathematics
Languages : en
Pages : 693
Book Description
This volume, the second of Helgason's impressive three books on Lie groups and the geometry and analysis of symmetric spaces, is an introduction to group-theoretic methods in analysis on spaces with a group action. The first chapter deals with the three two-dimensional spaces of constant curvature, requiring only elementary methods and no Lie theory. It is remarkably accessible and would be suitable for a first-year graduate course. The remainder of the book covers more advanced topics, including the work of Harish-Chandra and others, but especially that of Helgason himself. Indeed, the exposition can be seen as an account of the author's tremendous contributions to the subject.Chapter I deals with modern integral geometry and Radon transforms. The second chapter examines the interconnection between Lie groups and differential operators. Chapter IV develops the theory of spherical functions on semisimple Lie groups with a certain degree of completeness, including a study of Harish-Chandra's $c$-function. The treatment of analysis on compact symmetric spaces (Chapter V) includes some finite-dimensional representation theory for compact Lie groups and Fourier analysis on compact groups. Each chapter ends with exercises (with solutions given at the end of the book!) and historical notes.This book, which is new to the AMS publishing program, is an excellent example of the author's well-known clear and careful writing style. It has become the standard text for the study of spherical functions and invariant differential operators on symmetric spaces. Sigurdur Helgason was awarded the Steele Prize for Groups and Geometric Analysis and the companion volume, ""Differential Geometry, Lie Groups and Symmetric Spaces.""
Groups & Geometric Analysis
Author:
Publisher: Academic Press
ISBN: 0080874320
Category : Mathematics
Languages : en
Pages : 678
Book Description
Groups & Geometric Analysis
Publisher: Academic Press
ISBN: 0080874320
Category : Mathematics
Languages : en
Pages : 678
Book Description
Groups & Geometric Analysis
Differential Geometry, Lie Groups, and Symmetric Spaces
Author: Sigurdur Helgason
Publisher: American Mathematical Soc.
ISBN: 0821828487
Category : Mathematics
Languages : en
Pages : 682
Book Description
A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.
Publisher: American Mathematical Soc.
ISBN: 0821828487
Category : Mathematics
Languages : en
Pages : 682
Book Description
A great book ... a necessary item in any mathematical library. --S. S. Chern, University of California A brilliant book: rigorous, tightly organized, and covering a vast amount of good mathematics. --Barrett O'Neill, University of California This is obviously a very valuable and well thought-out book on an important subject. --Andre Weil, Institute for Advanced Study The study of homogeneous spaces provides excellent insights into both differential geometry and Lie groups. In geometry, for instance, general theorems and properties will also hold for homogeneous spaces, and will usually be easier to understand and to prove in this setting. For Lie groups, a significant amount of analysis either begins with or reduces to analysis on homogeneous spaces, frequently on symmetric spaces. For many years and for many mathematicians, Sigurdur Helgason's classic Differential Geometry, Lie Groups, and Symmetric Spaces has been--and continues to be--the standard source for this material. Helgason begins with a concise, self-contained introduction to differential geometry. Next is a careful treatment of the foundations of the theory of Lie groups, presented in a manner that since 1962 has served as a model to a number of subsequent authors. This sets the stage for the introduction and study of symmetric spaces, which form the central part of the book. The text concludes with the classification of symmetric spaces by means of the Killing-Cartan classification of simple Lie algebras over $\mathbb{C}$ and Cartan's classification of simple Lie algebras over $\mathbb{R}$, following a method of Victor Kac. The excellent exposition is supplemented by extensive collections of useful exercises at the end of each chapter. All of the problems have either solutions or substantial hints, found at the back of the book. For this edition, the author has made corrections and added helpful notes and useful references. Sigurdur Helgason was awarded the Steele Prize for Differential Geometry, Lie Groups, and Symmetric Spaces and Groups and Geometric Analysis.
Groups and Geometric Analysis
Author: Sigurdur Helgason
Publisher: American Mathematical Society
ISBN: 0821832115
Category : Mathematics
Languages : en
Pages : 667
Book Description
Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.
Publisher: American Mathematical Society
ISBN: 0821832115
Category : Mathematics
Languages : en
Pages : 667
Book Description
Group-theoretic methods have taken an increasingly prominent role in analysis. Some of this change has been due to the writings of Sigurdur Helgason. This book is an introduction to such methods on spaces with symmetry given by the action of a Lie group. The introductory chapter is a self-contained account of the analysis on surfaces of constant curvature. Later chapters cover general cases of the Radon transform, spherical functions, invariant operators, compact symmetric spaces and other topics. This book, together with its companion volume, Geometric Analysis on Symmetric Spaces (AMS Mathematical Surveys and Monographs series, vol. 39, 1994), has become the standard text for this approach to geometric analysis. Sigurdur Helgason was awarded the Steele Prize for outstanding mathematical exposition for Groups and Geometric Analysis and Differential Geometry, Lie Groups and Symmetric Spaces.
From Groups to Geometry and Back
Author: Vaughn Climenhaga
Publisher: American Mathematical Soc.
ISBN: 1470434792
Category : Mathematics
Languages : en
Pages : 442
Book Description
Groups arise naturally as symmetries of geometric objects, and so groups can be used to understand geometry and topology. Conversely, one can study abstract groups by using geometric techniques and ultimately by treating groups themselves as geometric objects. This book explores these connections between group theory and geometry, introducing some of the main ideas of transformation groups, algebraic topology, and geometric group theory. The first half of the book introduces basic notions of group theory and studies symmetry groups in various geometries, including Euclidean, projective, and hyperbolic. The classification of Euclidean isometries leads to results on regular polyhedra and polytopes; the study of symmetry groups using matrices leads to Lie groups and Lie algebras. The second half of the book explores ideas from algebraic topology and geometric group theory. The fundamental group appears as yet another group associated to a geometric object and turns out to be a symmetry group using covering spaces and deck transformations. In the other direction, Cayley graphs, planar models, and fundamental domains appear as geometric objects associated to groups. The final chapter discusses groups themselves as geometric objects, including a gentle introduction to Gromov's theorem on polynomial growth and Grigorchuk's example of intermediate growth. The book is accessible to undergraduate students (and anyone else) with a background in calculus, linear algebra, and basic real analysis, including topological notions of convergence and connectedness. This book is a result of the MASS course in algebra at Penn State University in the fall semester of 2009.
Publisher: American Mathematical Soc.
ISBN: 1470434792
Category : Mathematics
Languages : en
Pages : 442
Book Description
Groups arise naturally as symmetries of geometric objects, and so groups can be used to understand geometry and topology. Conversely, one can study abstract groups by using geometric techniques and ultimately by treating groups themselves as geometric objects. This book explores these connections between group theory and geometry, introducing some of the main ideas of transformation groups, algebraic topology, and geometric group theory. The first half of the book introduces basic notions of group theory and studies symmetry groups in various geometries, including Euclidean, projective, and hyperbolic. The classification of Euclidean isometries leads to results on regular polyhedra and polytopes; the study of symmetry groups using matrices leads to Lie groups and Lie algebras. The second half of the book explores ideas from algebraic topology and geometric group theory. The fundamental group appears as yet another group associated to a geometric object and turns out to be a symmetry group using covering spaces and deck transformations. In the other direction, Cayley graphs, planar models, and fundamental domains appear as geometric objects associated to groups. The final chapter discusses groups themselves as geometric objects, including a gentle introduction to Gromov's theorem on polynomial growth and Grigorchuk's example of intermediate growth. The book is accessible to undergraduate students (and anyone else) with a background in calculus, linear algebra, and basic real analysis, including topological notions of convergence and connectedness. This book is a result of the MASS course in algebra at Penn State University in the fall semester of 2009.
Lie Groups and Geometric Aspects of Isometric Actions
Author: Marcos M. Alexandrino
Publisher: Springer
ISBN: 3319166131
Category : Mathematics
Languages : en
Pages : 215
Book Description
This book provides quick access to the theory of Lie groups and isometric actions on smooth manifolds, using a concise geometric approach. After a gentle introduction to the subject, some of its recent applications to active research areas are explored, keeping a constant connection with the basic material. The topics discussed include polar actions, singular Riemannian foliations, cohomogeneity one actions, and positively curved manifolds with many symmetries. This book stems from the experience gathered by the authors in several lectures along the years and was designed to be as self-contained as possible. It is intended for advanced undergraduates, graduate students and young researchers in geometry and can be used for a one-semester course or independent study.
Publisher: Springer
ISBN: 3319166131
Category : Mathematics
Languages : en
Pages : 215
Book Description
This book provides quick access to the theory of Lie groups and isometric actions on smooth manifolds, using a concise geometric approach. After a gentle introduction to the subject, some of its recent applications to active research areas are explored, keeping a constant connection with the basic material. The topics discussed include polar actions, singular Riemannian foliations, cohomogeneity one actions, and positively curved manifolds with many symmetries. This book stems from the experience gathered by the authors in several lectures along the years and was designed to be as self-contained as possible. It is intended for advanced undergraduates, graduate students and young researchers in geometry and can be used for a one-semester course or independent study.
Analysis and Geometry on Graphs and Manifolds
Author: Matthias Keller
Publisher: Cambridge University Press
ISBN: 1108587380
Category : Mathematics
Languages : en
Pages : 493
Book Description
The interplay of geometry, spectral theory and stochastics has a long and fruitful history, and is the driving force behind many developments in modern mathematics. Bringing together contributions from a 2017 conference at the University of Potsdam, this volume focuses on global effects of local properties. Exploring the similarities and differences between the discrete and the continuous settings is of great interest to both researchers and graduate students in geometric analysis. The range of survey articles presented in this volume give an expository overview of various topics, including curvature, the effects of geometry on the spectrum, geometric group theory, and spectral theory of Laplacian and Schrödinger operators. Also included are shorter articles focusing on specific techniques and problems, allowing the reader to get to the heart of several key topics.
Publisher: Cambridge University Press
ISBN: 1108587380
Category : Mathematics
Languages : en
Pages : 493
Book Description
The interplay of geometry, spectral theory and stochastics has a long and fruitful history, and is the driving force behind many developments in modern mathematics. Bringing together contributions from a 2017 conference at the University of Potsdam, this volume focuses on global effects of local properties. Exploring the similarities and differences between the discrete and the continuous settings is of great interest to both researchers and graduate students in geometric analysis. The range of survey articles presented in this volume give an expository overview of various topics, including curvature, the effects of geometry on the spectrum, geometric group theory, and spectral theory of Laplacian and Schrödinger operators. Also included are shorter articles focusing on specific techniques and problems, allowing the reader to get to the heart of several key topics.
Geometric Group Theory
Author: Clara Löh
Publisher: Springer
ISBN: 3319722549
Category : Mathematics
Languages : en
Pages : 390
Book Description
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Publisher: Springer
ISBN: 3319722549
Category : Mathematics
Languages : en
Pages : 390
Book Description
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometric Analysis on Symmetric Spaces
Author: Sigurdur Helgason
Publisher: American Mathematical Soc.
ISBN: 9780821815380
Category : Mathematics
Languages : en
Pages : 636
Book Description
Among Riemannian manifolds, symmetric spaces (in the sense of Cartan) provide an abundant supply of elegant examples, the structures of which are enhanced by the rich theory of semisimple Lie groups. On these spaces, global analysis, particularly integration theory and partial differential operators, arises in a natural way by the requirement of geometric invariance. In Euclidean space these two subjects are related by the Fourier transform. The Peter-Weyl theory for compact groups, and Cartan's refinement of it, provides a way to develop harmonic analysis on compact symmetric spaces. The noncompact symmetric spaces, however, present a multitude of new and natural problems. This book is devoted to geometric analysis on noncompact Riemannian spaces. The exposition in this book is accessible to readers with modest background in semisimple Lie group theory. In particular, familiarity with representation theory is not needed.
Publisher: American Mathematical Soc.
ISBN: 9780821815380
Category : Mathematics
Languages : en
Pages : 636
Book Description
Among Riemannian manifolds, symmetric spaces (in the sense of Cartan) provide an abundant supply of elegant examples, the structures of which are enhanced by the rich theory of semisimple Lie groups. On these spaces, global analysis, particularly integration theory and partial differential operators, arises in a natural way by the requirement of geometric invariance. In Euclidean space these two subjects are related by the Fourier transform. The Peter-Weyl theory for compact groups, and Cartan's refinement of it, provides a way to develop harmonic analysis on compact symmetric spaces. The noncompact symmetric spaces, however, present a multitude of new and natural problems. This book is devoted to geometric analysis on noncompact Riemannian spaces. The exposition in this book is accessible to readers with modest background in semisimple Lie group theory. In particular, familiarity with representation theory is not needed.
Topics in Groups and Geometry
Author: Tullio Ceccherini-Silberstein
Publisher: Springer Nature
ISBN: 3030881091
Category : Mathematics
Languages : en
Pages : 468
Book Description
This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov’s pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov’s theorem, namely that finitely generated groups of polynomial growth are virtually nilpotent. This beautiful result gave birth to a fascinating new area of research which is still active today. The purpose of the book is to collect these naturally related results together in one place, most of which are scattered throughout the literature, some of them appearing here in book form for the first time. In this way, the connections between these topics are revealed, providing a pleasant introduction to geometric group theory based on ideas surrounding Gromov's theorem. The book will be of interest to mature undergraduate and graduate students in mathematics who are familiar with basic group theory and topology, and who wish to learn more about geometric, analytic, and probabilistic aspects of infinite groups.
Publisher: Springer Nature
ISBN: 3030881091
Category : Mathematics
Languages : en
Pages : 468
Book Description
This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov’s pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov’s theorem, namely that finitely generated groups of polynomial growth are virtually nilpotent. This beautiful result gave birth to a fascinating new area of research which is still active today. The purpose of the book is to collect these naturally related results together in one place, most of which are scattered throughout the literature, some of them appearing here in book form for the first time. In this way, the connections between these topics are revealed, providing a pleasant introduction to geometric group theory based on ideas surrounding Gromov's theorem. The book will be of interest to mature undergraduate and graduate students in mathematics who are familiar with basic group theory and topology, and who wish to learn more about geometric, analytic, and probabilistic aspects of infinite groups.