Author: Rolf S. Rees
Publisher: Routledge
ISBN: 1351444387
Category : Mathematics
Languages : en
Pages : 339
Book Description
Examines partitions and covers of graphs and digraphs, latin squares, pairwise balanced designs with prescribed block sizes, ranks and permanents, extremal graph theory, Hadamard matrices and graph factorizations. This book is designed to be of interest to applied mathematicians, computer scientists and communications researchers.
Graphs, Matrices, and Designs
Author: Rolf S. Rees
Publisher: Routledge
ISBN: 1351444387
Category : Mathematics
Languages : en
Pages : 339
Book Description
Examines partitions and covers of graphs and digraphs, latin squares, pairwise balanced designs with prescribed block sizes, ranks and permanents, extremal graph theory, Hadamard matrices and graph factorizations. This book is designed to be of interest to applied mathematicians, computer scientists and communications researchers.
Publisher: Routledge
ISBN: 1351444387
Category : Mathematics
Languages : en
Pages : 339
Book Description
Examines partitions and covers of graphs and digraphs, latin squares, pairwise balanced designs with prescribed block sizes, ranks and permanents, extremal graph theory, Hadamard matrices and graph factorizations. This book is designed to be of interest to applied mathematicians, computer scientists and communications researchers.
Graphs and Matrices
Author: Ravindra B. Bapat
Publisher: Springer
ISBN: 1447165691
Category : Mathematics
Languages : en
Pages : 197
Book Description
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.
Publisher: Springer
ISBN: 1447165691
Category : Mathematics
Languages : en
Pages : 197
Book Description
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reorganized. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory, it will also benefit readers in the sciences and engineering.
Design Structure Matrix Methods and Applications
Author: Steven D. Eppinger
Publisher: MIT Press
ISBN: 0262300656
Category : Science
Languages : en
Pages : 347
Book Description
An introduction to a powerful and flexible network modeling tool for developing and understanding complex systems, with many examples from a range of industries. Design structure matrix (DSM) is a straightforward and flexible modeling technique that can be used for designing, developing, and managing complex systems. DSM offers network modeling tools that represent the elements of a system and their interactions, thereby highlighting the system's architecture (or designed structure). Its advantages include compact format, visual nature, intuitive representation, powerful analytical capacity, and flexibility. Used primarily so far in the area of engineering management, DSM is increasingly being applied to complex issues in health care management, financial systems, public policy, natural sciences, and social systems. This book offers a clear and concise explanation of DSM methods for practitioners and researchers.
Publisher: MIT Press
ISBN: 0262300656
Category : Science
Languages : en
Pages : 347
Book Description
An introduction to a powerful and flexible network modeling tool for developing and understanding complex systems, with many examples from a range of industries. Design structure matrix (DSM) is a straightforward and flexible modeling technique that can be used for designing, developing, and managing complex systems. DSM offers network modeling tools that represent the elements of a system and their interactions, thereby highlighting the system's architecture (or designed structure). Its advantages include compact format, visual nature, intuitive representation, powerful analytical capacity, and flexibility. Used primarily so far in the area of engineering management, DSM is increasingly being applied to complex issues in health care management, financial systems, public policy, natural sciences, and social systems. This book offers a clear and concise explanation of DSM methods for practitioners and researchers.
Matrices in Combinatorics and Graph Theory
Author: Bolian Liu
Publisher: Springer Science & Business Media
ISBN: 9780792364696
Category : Mathematics
Languages : en
Pages : 326
Book Description
Combinatorics and Matrix Theory have a symbiotic, or mutually beneficial, relationship. This relationship is discussed in my paper The symbiotic relationship of combinatorics and matrix theoryl where I attempted to justify this description. One could say that a more detailed justification was given in my book with H. J. Ryser entitled Combinatorial Matrix Theon? where an attempt was made to give a broad picture of the use of combinatorial ideas in matrix theory and the use of matrix theory in proving theorems which, at least on the surface, are combinatorial in nature. In the book by Liu and Lai, this picture is enlarged and expanded to include recent developments and contributions of Chinese mathematicians, many of which have not been readily available to those of us who are unfamiliar with Chinese journals. Necessarily, there is some overlap with the book Combinatorial Matrix Theory. Some of the additional topics include: spectra of graphs, eulerian graph problems, Shannon capacity, generalized inverses of Boolean matrices, matrix rearrangements, and matrix completions. A topic to which many Chinese mathematicians have made substantial contributions is the combinatorial analysis of powers of nonnegative matrices, and a large chapter is devoted to this topic. This book should be a valuable resource for mathematicians working in the area of combinatorial matrix theory. Richard A. Brualdi University of Wisconsin - Madison 1 Linear Alg. Applies., vols. 162-4, 1992, 65-105 2Camhridge University Press, 1991.
Publisher: Springer Science & Business Media
ISBN: 9780792364696
Category : Mathematics
Languages : en
Pages : 326
Book Description
Combinatorics and Matrix Theory have a symbiotic, or mutually beneficial, relationship. This relationship is discussed in my paper The symbiotic relationship of combinatorics and matrix theoryl where I attempted to justify this description. One could say that a more detailed justification was given in my book with H. J. Ryser entitled Combinatorial Matrix Theon? where an attempt was made to give a broad picture of the use of combinatorial ideas in matrix theory and the use of matrix theory in proving theorems which, at least on the surface, are combinatorial in nature. In the book by Liu and Lai, this picture is enlarged and expanded to include recent developments and contributions of Chinese mathematicians, many of which have not been readily available to those of us who are unfamiliar with Chinese journals. Necessarily, there is some overlap with the book Combinatorial Matrix Theory. Some of the additional topics include: spectra of graphs, eulerian graph problems, Shannon capacity, generalized inverses of Boolean matrices, matrix rearrangements, and matrix completions. A topic to which many Chinese mathematicians have made substantial contributions is the combinatorial analysis of powers of nonnegative matrices, and a large chapter is devoted to this topic. This book should be a valuable resource for mathematicians working in the area of combinatorial matrix theory. Richard A. Brualdi University of Wisconsin - Madison 1 Linear Alg. Applies., vols. 162-4, 1992, 65-105 2Camhridge University Press, 1991.
Graph Theory and Sparse Matrix Computation
Author: Alan George
Publisher: Springer Science & Business Media
ISBN: 1461383692
Category : Mathematics
Languages : en
Pages : 254
Book Description
When reality is modeled by computation, matrices are often the connection between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer, however, efficiency demands that every possible advantage be exploited. The articles in this volume are based on recent research on sparse matrix computations. This volume looks at graph theory as it connects to linear algebra, parallel computing, data structures, geometry, and both numerical and discrete algorithms. The articles are grouped into three general categories: graph models of symmetric matrices and factorizations, graph models of algorithms on nonsymmetric matrices, and parallel sparse matrix algorithms. This book will be a resource for the researcher or advanced student of either graphs or sparse matrices; it will be useful to mathematicians, numerical analysts and theoretical computer scientists alike.
Publisher: Springer Science & Business Media
ISBN: 1461383692
Category : Mathematics
Languages : en
Pages : 254
Book Description
When reality is modeled by computation, matrices are often the connection between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer, however, efficiency demands that every possible advantage be exploited. The articles in this volume are based on recent research on sparse matrix computations. This volume looks at graph theory as it connects to linear algebra, parallel computing, data structures, geometry, and both numerical and discrete algorithms. The articles are grouped into three general categories: graph models of symmetric matrices and factorizations, graph models of algorithms on nonsymmetric matrices, and parallel sparse matrix algorithms. This book will be a resource for the researcher or advanced student of either graphs or sparse matrices; it will be useful to mathematicians, numerical analysts and theoretical computer scientists alike.
Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs
Author: Jason J. Molitierno
Publisher: CRC Press
ISBN: 1439863393
Category : Computers
Languages : en
Pages : 423
Book Description
On the surface, matrix theory and graph theory seem like very different branches of mathematics. However, adjacency, Laplacian, and incidence matrices are commonly used to represent graphs, and many properties of matrices can give us useful information about the structure of graphs.Applications of Combinatorial Matrix Theory to Laplacian Matrices o
Publisher: CRC Press
ISBN: 1439863393
Category : Computers
Languages : en
Pages : 423
Book Description
On the surface, matrix theory and graph theory seem like very different branches of mathematics. However, adjacency, Laplacian, and incidence matrices are commonly used to represent graphs, and many properties of matrices can give us useful information about the structure of graphs.Applications of Combinatorial Matrix Theory to Laplacian Matrices o
Matrices and Graphs in Geometry
Author: Miroslav Fiedler
Publisher: Cambridge University Press
ISBN: 0521461936
Category : Mathematics
Languages : en
Pages : 206
Book Description
Demonstrates the close relationship between matrix theory and elementary Euclidean geometry, with emphasis on using simple graph-theoretical notions.
Publisher: Cambridge University Press
ISBN: 0521461936
Category : Mathematics
Languages : en
Pages : 206
Book Description
Demonstrates the close relationship between matrix theory and elementary Euclidean geometry, with emphasis on using simple graph-theoretical notions.
Graph Algorithms in the Language of Linear Algebra
Author: Jeremy Kepner
Publisher: SIAM
ISBN: 9780898719918
Category : Mathematics
Languages : en
Pages : 388
Book Description
The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.
Publisher: SIAM
ISBN: 9780898719918
Category : Mathematics
Languages : en
Pages : 388
Book Description
The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.
Algebraic Graph Theory
Author: Ulrich Knauer
Publisher: Walter de Gruyter
ISBN: 311025509X
Category : Mathematics
Languages : en
Pages : 325
Book Description
Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors. This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces.
Publisher: Walter de Gruyter
ISBN: 311025509X
Category : Mathematics
Languages : en
Pages : 325
Book Description
Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors. This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces.
Structural Mechanics
Author: Ali Kaveh
Publisher:
ISBN: 9780863801334
Category : Human rights
Languages : en
Pages : 348
Book Description
Publisher:
ISBN: 9780863801334
Category : Human rights
Languages : en
Pages : 348
Book Description