Author: Alexander Grigor’yan
Publisher: American Mathematical Soc.
ISBN: 147044397X
Category : Mathematics
Languages : en
Pages : 160
Book Description
A central object of this book is the discrete Laplace operator on finite and infinite graphs. The eigenvalues of the discrete Laplace operator have long been used in graph theory as a convenient tool for understanding the structure of complex graphs. They can also be used in order to estimate the rate of convergence to equilibrium of a random walk (Markov chain) on finite graphs. For infinite graphs, a study of the heat kernel allows to solve the type problem—a problem of deciding whether the random walk is recurrent or transient. This book starts with elementary properties of the eigenvalues on finite graphs, continues with their estimates and applications, and concludes with heat kernel estimates on infinite graphs and their application to the type problem. The book is suitable for beginners in the subject and accessible to undergraduate and graduate students with a background in linear algebra I and analysis I. It is based on a lecture course taught by the author and includes a wide variety of exercises. The book will help the reader to reach a level of understanding sufficient to start pursuing research in this exciting area.
Introduction to Analysis on Graphs
Author: Alexander Grigor’yan
Publisher: American Mathematical Soc.
ISBN: 147044397X
Category : Mathematics
Languages : en
Pages : 160
Book Description
A central object of this book is the discrete Laplace operator on finite and infinite graphs. The eigenvalues of the discrete Laplace operator have long been used in graph theory as a convenient tool for understanding the structure of complex graphs. They can also be used in order to estimate the rate of convergence to equilibrium of a random walk (Markov chain) on finite graphs. For infinite graphs, a study of the heat kernel allows to solve the type problem—a problem of deciding whether the random walk is recurrent or transient. This book starts with elementary properties of the eigenvalues on finite graphs, continues with their estimates and applications, and concludes with heat kernel estimates on infinite graphs and their application to the type problem. The book is suitable for beginners in the subject and accessible to undergraduate and graduate students with a background in linear algebra I and analysis I. It is based on a lecture course taught by the author and includes a wide variety of exercises. The book will help the reader to reach a level of understanding sufficient to start pursuing research in this exciting area.
Publisher: American Mathematical Soc.
ISBN: 147044397X
Category : Mathematics
Languages : en
Pages : 160
Book Description
A central object of this book is the discrete Laplace operator on finite and infinite graphs. The eigenvalues of the discrete Laplace operator have long been used in graph theory as a convenient tool for understanding the structure of complex graphs. They can also be used in order to estimate the rate of convergence to equilibrium of a random walk (Markov chain) on finite graphs. For infinite graphs, a study of the heat kernel allows to solve the type problem—a problem of deciding whether the random walk is recurrent or transient. This book starts with elementary properties of the eigenvalues on finite graphs, continues with their estimates and applications, and concludes with heat kernel estimates on infinite graphs and their application to the type problem. The book is suitable for beginners in the subject and accessible to undergraduate and graduate students with a background in linear algebra I and analysis I. It is based on a lecture course taught by the author and includes a wide variety of exercises. The book will help the reader to reach a level of understanding sufficient to start pursuing research in this exciting area.
Graphs and Geometry
Author: László Lovász
Publisher: American Mathematical Soc.
ISBN: 1470450879
Category : Mathematics
Languages : en
Pages : 458
Book Description
Graphs are usually represented as geometric objects drawn in the plane, consisting of nodes and curves connecting them. The main message of this book is that such a representation is not merely a way to visualize the graph, but an important mathematical tool. It is obvious that this geometry is crucial in engineering, for example, if you want to understand rigidity of frameworks and mobility of mechanisms. But even if there is no geometry directly connected to the graph-theoretic problem, a well-chosen geometric embedding has mathematical meaning and applications in proofs and algorithms. This book surveys a number of such connections between graph theory and geometry: among others, rubber band representations, coin representations, orthogonal representations, and discrete analytic functions. Applications are given in information theory, statistical physics, graph algorithms and quantum physics. The book is based on courses and lectures that the author has given over the last few decades and offers readers with some knowledge of graph theory, linear algebra, and probability a thorough introduction to this exciting new area with a large collection of illuminating examples and exercises.
Publisher: American Mathematical Soc.
ISBN: 1470450879
Category : Mathematics
Languages : en
Pages : 458
Book Description
Graphs are usually represented as geometric objects drawn in the plane, consisting of nodes and curves connecting them. The main message of this book is that such a representation is not merely a way to visualize the graph, but an important mathematical tool. It is obvious that this geometry is crucial in engineering, for example, if you want to understand rigidity of frameworks and mobility of mechanisms. But even if there is no geometry directly connected to the graph-theoretic problem, a well-chosen geometric embedding has mathematical meaning and applications in proofs and algorithms. This book surveys a number of such connections between graph theory and geometry: among others, rubber band representations, coin representations, orthogonal representations, and discrete analytic functions. Applications are given in information theory, statistical physics, graph algorithms and quantum physics. The book is based on courses and lectures that the author has given over the last few decades and offers readers with some knowledge of graph theory, linear algebra, and probability a thorough introduction to this exciting new area with a large collection of illuminating examples and exercises.
Creating More Effective Graphs
Author: Naomi B. Robbins
Publisher: Wiley-Interscience
ISBN:
Category : Business & Economics
Languages : en
Pages : 432
Book Description
A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in graphical data analysis and presentation to highlight some of today's most effective methods. In clear, concise language, the author answers such common questions as: What constitutes an effective graph for communicating data? How do I choose the type of graph that is best for my data? How do I recognize a misleading graph? Why do some graphs have logarithmic scales? In no time you'll graduate from bar graphs and pie charts to graphs that illuminate data like: Dot plots Box plots Scatterplots Linked micromaps Trellis displays Mosaic plots Month plots Scatterplot matrices . . . most of them requiring only inexpensive, easily downloadable software. Whether you're a novice at graphing or already use graphs in your work but want to improve them, Creating More Effective Graphs will help you develop the kind of clear, accurate, and well-designed graphs that will allow your data to be understood.
Publisher: Wiley-Interscience
ISBN:
Category : Business & Economics
Languages : en
Pages : 432
Book Description
A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in graphical data analysis and presentation to highlight some of today's most effective methods. In clear, concise language, the author answers such common questions as: What constitutes an effective graph for communicating data? How do I choose the type of graph that is best for my data? How do I recognize a misleading graph? Why do some graphs have logarithmic scales? In no time you'll graduate from bar graphs and pie charts to graphs that illuminate data like: Dot plots Box plots Scatterplots Linked micromaps Trellis displays Mosaic plots Month plots Scatterplot matrices . . . most of them requiring only inexpensive, easily downloadable software. Whether you're a novice at graphing or already use graphs in your work but want to improve them, Creating More Effective Graphs will help you develop the kind of clear, accurate, and well-designed graphs that will allow your data to be understood.
Introduction to Quantum Graphs
Author: Gregory Berkolaiko
Publisher: American Mathematical Soc.
ISBN: 0821892118
Category : Mathematics
Languages : en
Pages : 291
Book Description
A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.
Publisher: American Mathematical Soc.
ISBN: 0821892118
Category : Mathematics
Languages : en
Pages : 291
Book Description
A ``quantum graph'' is a graph considered as a one-dimensional complex and equipped with a differential operator (``Hamiltonian''). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., ``meso-'' or ``nano-scale'') system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on quantum graphs has brought together tools and intuition coming from graph theory, combinatorics, mathematical physics, PDEs, and spectral theory. This book provides a comprehensive introduction to the topic, collecting the main notions and techniques. It also contains a survey of the current state of the quantum graph research and applications.
Functions and Graphs
Author: I. M. Gelfand
Publisher: Courier Corporation
ISBN: 0486317137
Category : Mathematics
Languages : en
Pages : 116
Book Description
This text demonstrates the fundamentals of graph theory. The first part employs simple functions to analyze basics; second half deals with linear functions, quadratic trinomials, linear fractional functions, power functions, rational functions. 1969 edition.
Publisher: Courier Corporation
ISBN: 0486317137
Category : Mathematics
Languages : en
Pages : 116
Book Description
This text demonstrates the fundamentals of graph theory. The first part employs simple functions to analyze basics; second half deals with linear functions, quadratic trinomials, linear fractional functions, power functions, rational functions. 1969 edition.
Graphs, Networks and Algorithms
Author: Dieter Jungnickel
Publisher: Springer Science & Business Media
ISBN: 3662038226
Category : Mathematics
Languages : en
Pages : 597
Book Description
Revised throughout Includes new chapters on the network simplex algorithm and a section on the five color theorem Recent developments are discussed
Publisher: Springer Science & Business Media
ISBN: 3662038226
Category : Mathematics
Languages : en
Pages : 597
Book Description
Revised throughout Includes new chapters on the network simplex algorithm and a section on the five color theorem Recent developments are discussed
Graphs, Maps, Trees
Author: Franco Moretti
Publisher: Verso Books
ISBN: 1789603315
Category : Literary Criticism
Languages : en
Pages : 141
Book Description
In this groundbreaking book, Franco Moretti argues that literature scholars should stop reading books and start counting, graphing, and mapping them instead. In place of the traditionally selective literary canon of a few hundred texts, Moretti offers charts, maps and time lines, developing the idea of "distant reading" into a full-blown experiment in literary historiography, in which the canon disappears into the larger literary system. Charting entire genres-the epistolary, the gothic, and the historical novel-as well as the literary output of countries such as Japan, Italy, Spain, and Nigeria, he shows how literary history looks significantly different from what is commonly supposed and how the concept of aesthetic form can be radically redefined.
Publisher: Verso Books
ISBN: 1789603315
Category : Literary Criticism
Languages : en
Pages : 141
Book Description
In this groundbreaking book, Franco Moretti argues that literature scholars should stop reading books and start counting, graphing, and mapping them instead. In place of the traditionally selective literary canon of a few hundred texts, Moretti offers charts, maps and time lines, developing the idea of "distant reading" into a full-blown experiment in literary historiography, in which the canon disappears into the larger literary system. Charting entire genres-the epistolary, the gothic, and the historical novel-as well as the literary output of countries such as Japan, Italy, Spain, and Nigeria, he shows how literary history looks significantly different from what is commonly supposed and how the concept of aesthetic form can be radically redefined.
Graphs on Surfaces
Author: Bojan Mohar
Publisher: Johns Hopkins University Press
ISBN: 9780801866890
Category : Mathematics
Languages : en
Pages : 0
Book Description
Graph theory is one of the fastest growing branches of mathematics. Until recently, it was regarded as a branch of combinatorics and was best known by the famous four-color theorem stating that any map can be colored using only four colors such that no two bordering countries have the same color. Now graph theory is an area of its own with many deep results and beautiful open problems. Graph theory has numerous applications in almost every field of science and has attracted new interest because of its relevance to such technological problems as computer and telephone networking and, of course, the internet. In this new book in the Johns Hopkins Studies in the Mathematical Science series, Bojan Mohar and Carsten Thomassen look at a relatively new area of graph theory: that associated with curved surfaces. Graphs on surfaces form a natural link between discrete and continuous mathematics. The book provides a rigorous and concise introduction to graphs on surfaces and surveys some of the recent developments in this area. Among the basic results discussed are Kuratowski's theorem and other planarity criteria, the Jordan Curve Theorem and some of its extensions, the classification of surfaces, and the Heffter-Edmonds-Ringel rotation principle, which makes it possible to treat graphs on surfaces in a purely combinatorial way. The genus of a graph, contractability of cycles, edge-width, and face-width are treated purely combinatorially, and several results related to these concepts are included. The extension by Robertson and Seymour of Kuratowski's theorem to higher surfaces is discussed in detail, and a shorter proof is presented. The book concludes with a survey of recent developments on coloring graphs on surfaces.
Publisher: Johns Hopkins University Press
ISBN: 9780801866890
Category : Mathematics
Languages : en
Pages : 0
Book Description
Graph theory is one of the fastest growing branches of mathematics. Until recently, it was regarded as a branch of combinatorics and was best known by the famous four-color theorem stating that any map can be colored using only four colors such that no two bordering countries have the same color. Now graph theory is an area of its own with many deep results and beautiful open problems. Graph theory has numerous applications in almost every field of science and has attracted new interest because of its relevance to such technological problems as computer and telephone networking and, of course, the internet. In this new book in the Johns Hopkins Studies in the Mathematical Science series, Bojan Mohar and Carsten Thomassen look at a relatively new area of graph theory: that associated with curved surfaces. Graphs on surfaces form a natural link between discrete and continuous mathematics. The book provides a rigorous and concise introduction to graphs on surfaces and surveys some of the recent developments in this area. Among the basic results discussed are Kuratowski's theorem and other planarity criteria, the Jordan Curve Theorem and some of its extensions, the classification of surfaces, and the Heffter-Edmonds-Ringel rotation principle, which makes it possible to treat graphs on surfaces in a purely combinatorial way. The genus of a graph, contractability of cycles, edge-width, and face-width are treated purely combinatorially, and several results related to these concepts are included. The extension by Robertson and Seymour of Kuratowski's theorem to higher surfaces is discussed in detail, and a shorter proof is presented. The book concludes with a survey of recent developments on coloring graphs on surfaces.
Storytelling with Data
Author: Cole Nussbaumer Knaflic
Publisher: John Wiley & Sons
ISBN: 1119002265
Category : Mathematics
Languages : en
Pages : 284
Book Description
Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!
Publisher: John Wiley & Sons
ISBN: 1119002265
Category : Mathematics
Languages : en
Pages : 284
Book Description
Don't simply show your data—tell a story with it! Storytelling with Data teaches you the fundamentals of data visualization and how to communicate effectively with data. You'll discover the power of storytelling and the way to make data a pivotal point in your story. The lessons in this illuminative text are grounded in theory, but made accessible through numerous real-world examples—ready for immediate application to your next graph or presentation. Storytelling is not an inherent skill, especially when it comes to data visualization, and the tools at our disposal don't make it any easier. This book demonstrates how to go beyond conventional tools to reach the root of your data, and how to use your data to create an engaging, informative, compelling story. Specifically, you'll learn how to: Understand the importance of context and audience Determine the appropriate type of graph for your situation Recognize and eliminate the clutter clouding your information Direct your audience's attention to the most important parts of your data Think like a designer and utilize concepts of design in data visualization Leverage the power of storytelling to help your message resonate with your audience Together, the lessons in this book will help you turn your data into high impact visual stories that stick with your audience. Rid your world of ineffective graphs, one exploding 3D pie chart at a time. There is a story in your data—Storytelling with Data will give you the skills and power to tell it!
Graph Theory
Author: Radu Bumbacea
Publisher:
ISBN: 9780999342879
Category :
Languages : en
Pages : 400
Book Description
Publisher:
ISBN: 9780999342879
Category :
Languages : en
Pages : 400
Book Description