Graph Partitioning and Graph Clustering

Graph Partitioning and Graph Clustering PDF Author: David A. Bader
Publisher: American Mathematical Soc.
ISBN: 0821890387
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
Graph partitioning and graph clustering are ubiquitous subtasks in many applications where graphs play an important role. Generally speaking, both techniques aim at the identification of vertex subsets with many internal and few external edges. To name only a few, problems addressed by graph partitioning and graph clustering algorithms are: What are the communities within an (online) social network? How do I speed up a numerical simulation by mapping it efficiently onto a parallel computer? How must components be organized on a computer chip such that they can communicate efficiently with each other? What are the segments of a digital image? Which functions are certain genes (most likely) responsible for? The 10th DIMACS Implementation Challenge Workshop was devoted to determining realistic performance of algorithms where worst case analysis is overly pessimistic and probabilistic models are too unrealistic. Articles in the volume describe and analyze various experimental data with the goal of getting insight into realistic algorithm performance in situations where analysis fails.

Graph Partitioning and Graph Clustering

Graph Partitioning and Graph Clustering PDF Author: David A. Bader
Publisher: American Mathematical Soc.
ISBN: 0821890387
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
Graph partitioning and graph clustering are ubiquitous subtasks in many applications where graphs play an important role. Generally speaking, both techniques aim at the identification of vertex subsets with many internal and few external edges. To name only a few, problems addressed by graph partitioning and graph clustering algorithms are: What are the communities within an (online) social network? How do I speed up a numerical simulation by mapping it efficiently onto a parallel computer? How must components be organized on a computer chip such that they can communicate efficiently with each other? What are the segments of a digital image? Which functions are certain genes (most likely) responsible for? The 10th DIMACS Implementation Challenge Workshop was devoted to determining realistic performance of algorithms where worst case analysis is overly pessimistic and probabilistic models are too unrealistic. Articles in the volume describe and analyze various experimental data with the goal of getting insight into realistic algorithm performance in situations where analysis fails.

Algebraic Graph Algorithms

Algebraic Graph Algorithms PDF Author: K. Erciyes
Publisher: Springer Nature
ISBN: 3030878864
Category : Computers
Languages : en
Pages : 229

Get Book Here

Book Description
This textbook discusses the design and implementation of basic algebraic graph algorithms, and algebraic graph algorithms for complex networks, employing matroids whenever possible. The text describes the design of a simple parallel matrix algorithm kernel that can be used for parallel processing of algebraic graph algorithms. Example code is presented in pseudocode, together with case studies in Python and MPI. The text assumes readers have a background in graph theory and/or graph algorithms.

Finding Out About

Finding Out About PDF Author: Richard K. Belew
Publisher: Cambridge University Press
ISBN: 9780521630283
Category : Computers
Languages : en
Pages : 388

Get Book Here

Book Description
Explains how to build useful tools for searching collections of text and other media.

Managing and Mining Graph Data

Managing and Mining Graph Data PDF Author: Charu C. Aggarwal
Publisher: Springer Science & Business Media
ISBN: 1441960457
Category : Computers
Languages : en
Pages : 623

Get Book Here

Book Description
Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing. Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.

Encyclopedia of Machine Learning

Encyclopedia of Machine Learning PDF Author: Claude Sammut
Publisher: Springer Science & Business Media
ISBN: 0387307680
Category : Computers
Languages : en
Pages : 1061

Get Book Here

Book Description
This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.

Algorithm Engineering

Algorithm Engineering PDF Author: Lasse Kliemann
Publisher: Springer
ISBN: 3319494872
Category : Computers
Languages : en
Pages : 428

Get Book Here

Book Description
Algorithm Engineering is a methodology for algorithmic research that combines theory with implementation and experimentation in order to obtain better algorithms with high practical impact. Traditionally, the study of algorithms was dominated by mathematical (worst-case) analysis. In Algorithm Engineering, algorithms are also implemented and experiments conducted in a systematic way, sometimes resembling the experimentation processes known from fields such as biology, chemistry, or physics. This helps in counteracting an otherwise growing gap between theory and practice.

Graph-Based Clustering and Data Visualization Algorithms

Graph-Based Clustering and Data Visualization Algorithms PDF Author: Ágnes Vathy-Fogarassy
Publisher: Springer Science & Business Media
ISBN: 1447151585
Category : Computers
Languages : en
Pages : 120

Get Book Here

Book Description
This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.

Spectral Graph Theory

Spectral Graph Theory PDF Author: Fan R. K. Chung
Publisher: American Mathematical Soc.
ISBN: 0821803158
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
This text discusses spectral graph theory.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases PDF Author: José L. Balcázar
Publisher: Springer Science & Business Media
ISBN: 364215882X
Category : Computers
Languages : en
Pages : 538

Get Book Here

Book Description
This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2010, held in Barcelona, Spain, in September 2010. The 120 revised full papers presented in three volumes, together with 12 demos (out of 24 submitted demos), were carefully reviewed and selected from 658 paper submissions. In addition, 7 ML and 7 DM papers were distinguished by the program chairs on the basis of their exceptional scientific quality and high impact on the field. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. A topic widely explored from both ML and DM perspectives was graphs, with motivations ranging from molecular chemistry to social networks.

Graph Mining

Graph Mining PDF Author: Deepayan Chakrabarti
Publisher: Springer Nature
ISBN: 3031019032
Category : Computers
Languages : en
Pages : 191

Get Book Here

Book Description
What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions