Author: Rada Mihalcea
Publisher: Cambridge University Press
ISBN: 1139498827
Category : Computers
Languages : en
Pages : 201
Book Description
Graph theory and the fields of natural language processing and information retrieval are well-studied disciplines. Traditionally, these areas have been perceived as distinct, with different algorithms, different applications and different potential end-users. However, recent research has shown that these disciplines are intimately connected, with a large variety of natural language processing and information retrieval applications finding efficient solutions within graph-theoretical frameworks. This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval. It brings together topics as diverse as lexical semantics, text summarization, text mining, ontology construction, text classification and information retrieval, which are connected by the common underlying theme of the use of graph-theoretical methods for text and information processing tasks. Readers will come away with a firm understanding of the major methods and applications in natural language processing and information retrieval that rely on graph-based representations and algorithms.
Graph-based Natural Language Processing and Information Retrieval
Author: Rada Mihalcea
Publisher: Cambridge University Press
ISBN: 1139498827
Category : Computers
Languages : en
Pages : 201
Book Description
Graph theory and the fields of natural language processing and information retrieval are well-studied disciplines. Traditionally, these areas have been perceived as distinct, with different algorithms, different applications and different potential end-users. However, recent research has shown that these disciplines are intimately connected, with a large variety of natural language processing and information retrieval applications finding efficient solutions within graph-theoretical frameworks. This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval. It brings together topics as diverse as lexical semantics, text summarization, text mining, ontology construction, text classification and information retrieval, which are connected by the common underlying theme of the use of graph-theoretical methods for text and information processing tasks. Readers will come away with a firm understanding of the major methods and applications in natural language processing and information retrieval that rely on graph-based representations and algorithms.
Publisher: Cambridge University Press
ISBN: 1139498827
Category : Computers
Languages : en
Pages : 201
Book Description
Graph theory and the fields of natural language processing and information retrieval are well-studied disciplines. Traditionally, these areas have been perceived as distinct, with different algorithms, different applications and different potential end-users. However, recent research has shown that these disciplines are intimately connected, with a large variety of natural language processing and information retrieval applications finding efficient solutions within graph-theoretical frameworks. This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval. It brings together topics as diverse as lexical semantics, text summarization, text mining, ontology construction, text classification and information retrieval, which are connected by the common underlying theme of the use of graph-theoretical methods for text and information processing tasks. Readers will come away with a firm understanding of the major methods and applications in natural language processing and information retrieval that rely on graph-based representations and algorithms.
Information Retrieval and Natural Language Processing
Author: Sheetal S. Sonawane
Publisher: Springer Nature
ISBN: 981169995X
Category : Mathematics
Languages : en
Pages : 186
Book Description
This book gives a comprehensive view of graph theory in informational retrieval (IR) and natural language processing(NLP). This book provides number of graph techniques for IR and NLP applications with examples. It also provides understanding of graph theory basics, graph algorithms and networks using graph. The book is divided into three parts and contains nine chapters. The first part gives graph theory basics and graph networks, and the second part provides basics of IR with graph-based information retrieval. The third part covers IR and NLP recent and emerging applications with case studies using graph theory. This book is unique in its way as it provides a strong foundation to a beginner in applying mathematical structure graph for IR and NLP applications. All technical details that include tools and technologies used for graph algorithms and implementation in Information Retrieval and Natural Language Processing with its future scope are explained in a clear and organized format.
Publisher: Springer Nature
ISBN: 981169995X
Category : Mathematics
Languages : en
Pages : 186
Book Description
This book gives a comprehensive view of graph theory in informational retrieval (IR) and natural language processing(NLP). This book provides number of graph techniques for IR and NLP applications with examples. It also provides understanding of graph theory basics, graph algorithms and networks using graph. The book is divided into three parts and contains nine chapters. The first part gives graph theory basics and graph networks, and the second part provides basics of IR with graph-based information retrieval. The third part covers IR and NLP recent and emerging applications with case studies using graph theory. This book is unique in its way as it provides a strong foundation to a beginner in applying mathematical structure graph for IR and NLP applications. All technical details that include tools and technologies used for graph algorithms and implementation in Information Retrieval and Natural Language Processing with its future scope are explained in a clear and organized format.
Introduction to Information Retrieval
Author: Christopher D. Manning
Publisher: Cambridge University Press
ISBN: 1139472100
Category : Computers
Languages : en
Pages :
Book Description
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.
Publisher: Cambridge University Press
ISBN: 1139472100
Category : Computers
Languages : en
Pages :
Book Description
Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.
Applied Natural Language Processing in the Enterprise
Author: Ankur A. Patel
Publisher: "O'Reilly Media, Inc."
ISBN: 1492062545
Category : Computers
Languages : en
Pages : 336
Book Description
NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production
Publisher: "O'Reilly Media, Inc."
ISBN: 1492062545
Category : Computers
Languages : en
Pages : 336
Book Description
NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production
Representation Learning for Natural Language Processing
Author: Zhiyuan Liu
Publisher: Springer Nature
ISBN: 9811555737
Category : Computers
Languages : en
Pages : 319
Book Description
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Publisher: Springer Nature
ISBN: 9811555737
Category : Computers
Languages : en
Pages : 319
Book Description
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Graph Learning and Network Science for Natural Language Processing
Author: Muskan Garg
Publisher: CRC Press
ISBN: 1000789306
Category : Business & Economics
Languages : en
Pages : 272
Book Description
Advances in graph-based natural language processing (NLP) and information retrieval tasks have shown the importance of processing using the Graph of Words method. This book covers recent concrete information, from the basics to advanced level, about graph-based learning, such as neural network-based approaches, computational intelligence for learning parameters and feature reduction, and network science for graph-based NPL. It also contains information about language generation based on graphical theories and language models. Features: Presents a comprehensive study of the interdisciplinary graphical approach to NLP Covers recent computational intelligence techniques for graph-based neural network models Discusses advances in random walk-based techniques, semantic webs, and lexical networks Explores recent research into NLP for graph-based streaming data Reviews advances in knowledge graph embedding and ontologies for NLP approaches This book is aimed at researchers and graduate students in computer science, natural language processing, and deep and machine learning.
Publisher: CRC Press
ISBN: 1000789306
Category : Business & Economics
Languages : en
Pages : 272
Book Description
Advances in graph-based natural language processing (NLP) and information retrieval tasks have shown the importance of processing using the Graph of Words method. This book covers recent concrete information, from the basics to advanced level, about graph-based learning, such as neural network-based approaches, computational intelligence for learning parameters and feature reduction, and network science for graph-based NPL. It also contains information about language generation based on graphical theories and language models. Features: Presents a comprehensive study of the interdisciplinary graphical approach to NLP Covers recent computational intelligence techniques for graph-based neural network models Discusses advances in random walk-based techniques, semantic webs, and lexical networks Explores recent research into NLP for graph-based streaming data Reviews advances in knowledge graph embedding and ontologies for NLP approaches This book is aimed at researchers and graduate students in computer science, natural language processing, and deep and machine learning.
Computational Processing of the Portuguese Language
Author: Helena Caseli
Publisher: Springer
ISBN: 3642288855
Category : Computers
Languages : en
Pages : 443
Book Description
This book constitutes the thoroughly refereed proceedings of the 8th International Workshop on Computational Processing of the Portuguese Language, PROPOR 2012, held in Coimbra, Portugal in April 2012. The 24 revised full papers and 23 revised short papers presented were carefully reviewed and selected from 86 submissions. These papers cover the areas related to phonology, morphology and POS-Tagging, acquisition, language resources, linguistic description, syntax and parsing, semantics, opinion analysis, natural language processing applications, speech production and phonetics, speech resources, speech processing and applications.
Publisher: Springer
ISBN: 3642288855
Category : Computers
Languages : en
Pages : 443
Book Description
This book constitutes the thoroughly refereed proceedings of the 8th International Workshop on Computational Processing of the Portuguese Language, PROPOR 2012, held in Coimbra, Portugal in April 2012. The 24 revised full papers and 23 revised short papers presented were carefully reviewed and selected from 86 submissions. These papers cover the areas related to phonology, morphology and POS-Tagging, acquisition, language resources, linguistic description, syntax and parsing, semantics, opinion analysis, natural language processing applications, speech production and phonetics, speech resources, speech processing and applications.
Natural Language Processing and Text Mining
Author: Anne Kao
Publisher: Springer Science & Business Media
ISBN: 1846287545
Category : Computers
Languages : en
Pages : 272
Book Description
Natural Language Processing and Text Mining not only discusses applications of Natural Language Processing techniques to certain Text Mining tasks, but also the converse, the use of Text Mining to assist NLP. It assembles a diverse views from internationally recognized researchers and emphasizes caveats in the attempt to apply Natural Language Processing to text mining. This state-of-the-art survey is a must-have for advanced students, professionals, and researchers.
Publisher: Springer Science & Business Media
ISBN: 1846287545
Category : Computers
Languages : en
Pages : 272
Book Description
Natural Language Processing and Text Mining not only discusses applications of Natural Language Processing techniques to certain Text Mining tasks, but also the converse, the use of Text Mining to assist NLP. It assembles a diverse views from internationally recognized researchers and emphasizes caveats in the attempt to apply Natural Language Processing to text mining. This state-of-the-art survey is a must-have for advanced students, professionals, and researchers.
Computational Linguistics, Speech And Image Processing For Arabic Language
Author: Neamat El Gayar
Publisher: World Scientific
ISBN: 9813229403
Category : Computers
Languages : en
Pages : 286
Book Description
This book encompasses a collection of topics covering recent advances that are important to the Arabic language in areas of natural language processing, speech and image analysis. This book presents state-of-the-art reviews and fundamentals as well as applications and recent innovations.The book chapters by top researchers present basic concepts and challenges for the Arabic language in linguistic processing, handwritten recognition, document analysis, text classification and speech processing. In addition, it reports on selected applications in sentiment analysis, annotation, text summarization, speech and font analysis, word recognition and spotting and question answering.Moreover, it highlights and introduces some novel applications in vital areas for the Arabic language. The book is therefore a useful resource for young researchers who are interested in the Arabic language and are still developing their fundamentals and skills in this area. It is also interesting for scientists who wish to keep track of the most recent research directions and advances in this area.
Publisher: World Scientific
ISBN: 9813229403
Category : Computers
Languages : en
Pages : 286
Book Description
This book encompasses a collection of topics covering recent advances that are important to the Arabic language in areas of natural language processing, speech and image analysis. This book presents state-of-the-art reviews and fundamentals as well as applications and recent innovations.The book chapters by top researchers present basic concepts and challenges for the Arabic language in linguistic processing, handwritten recognition, document analysis, text classification and speech processing. In addition, it reports on selected applications in sentiment analysis, annotation, text summarization, speech and font analysis, word recognition and spotting and question answering.Moreover, it highlights and introduces some novel applications in vital areas for the Arabic language. The book is therefore a useful resource for young researchers who are interested in the Arabic language and are still developing their fundamentals and skills in this area. It is also interesting for scientists who wish to keep track of the most recent research directions and advances in this area.
German Medical Data Sciences 2023 — Science. Close to People.
Author: R. Röhrig
Publisher: IOS Press
ISBN: 1643684299
Category : Medical
Languages : en
Pages : 288
Book Description
The Covid-19 pandemic affected the daily lives of all of us on many levels. Epidemiology suddenly became a personal matter and general interest in many aspects of medical data science became much more widespread. And physical distance became the new normal. This book presents the full paper part of the proceedings of GMDS 2023, the 68th annual meeting of the German Association for Medical Informatics, Biometry and Epidemiology, held from 17 to 21 September 2023 in Heilbronn, Germany. The theme of the conference was, Science. Close to People, a particularly appropriate theme for the first of these annual conferences to be held face-to-face since 2019. A total of 227 scientific contributions were submitted to GMDS 2023, including 41 full papers for this volume in Studies in HTI. Of these, 30 papers are included here, following a rigorous two-stage review process, which represents an acceptance rate of 73%. The 30 papers in this book are grouped under 8 headings: FAIRification; research software engineering for research infrastructure & study data management; human factors; data quality; clinical decision support & artificial intelligence; evaluation of healthcare IT; biosignals; and interoperability. Providing a broad overview of current developments in the disciplines of medical informatics, biometry and epidemiology, the book will be of interest to all those working in these fields.
Publisher: IOS Press
ISBN: 1643684299
Category : Medical
Languages : en
Pages : 288
Book Description
The Covid-19 pandemic affected the daily lives of all of us on many levels. Epidemiology suddenly became a personal matter and general interest in many aspects of medical data science became much more widespread. And physical distance became the new normal. This book presents the full paper part of the proceedings of GMDS 2023, the 68th annual meeting of the German Association for Medical Informatics, Biometry and Epidemiology, held from 17 to 21 September 2023 in Heilbronn, Germany. The theme of the conference was, Science. Close to People, a particularly appropriate theme for the first of these annual conferences to be held face-to-face since 2019. A total of 227 scientific contributions were submitted to GMDS 2023, including 41 full papers for this volume in Studies in HTI. Of these, 30 papers are included here, following a rigorous two-stage review process, which represents an acceptance rate of 73%. The 30 papers in this book are grouped under 8 headings: FAIRification; research software engineering for research infrastructure & study data management; human factors; data quality; clinical decision support & artificial intelligence; evaluation of healthcare IT; biosignals; and interoperability. Providing a broad overview of current developments in the disciplines of medical informatics, biometry and epidemiology, the book will be of interest to all those working in these fields.