Granular Computing in Decision Approximation

Granular Computing in Decision Approximation PDF Author: Lech Polkowski
Publisher: Springer
ISBN: 3319128809
Category : Technology & Engineering
Languages : en
Pages : 461

Get Book Here

Book Description
This book presents a study in knowledge discovery in data with knowledge understood as a set of relations among objects and their properties. Relations in this case are implicative decision rules and the paradigm in which they are induced is that of computing with granules defined by rough inclusions, the latter introduced and studied within rough mereology, the fuzzified version of mereology. In this book basic classes of rough inclusions are defined and based on them methods for inducing granular structures from data are highlighted. The resulting granular structures are subjected to classifying algorithms, notably k—nearest neighbors and bayesian classifiers. Experimental results are given in detail both in tabular and visualized form for fourteen data sets from UCI data repository. A striking feature of granular classifiers obtained by this approach is that preserving the accuracy of them on original data, they reduce substantially the size of the granulated data set as well as the set of granular decision rules. This feature makes the presented approach attractive in cases where a small number of rules providing a high classification accuracy is desirable. As basic algorithms used throughout the text are explained and illustrated with hand examples, the book may also serve as a textbook.

Granular Computing in Decision Approximation

Granular Computing in Decision Approximation PDF Author: Lech Polkowski
Publisher: Springer
ISBN: 3319128809
Category : Technology & Engineering
Languages : en
Pages : 461

Get Book Here

Book Description
This book presents a study in knowledge discovery in data with knowledge understood as a set of relations among objects and their properties. Relations in this case are implicative decision rules and the paradigm in which they are induced is that of computing with granules defined by rough inclusions, the latter introduced and studied within rough mereology, the fuzzified version of mereology. In this book basic classes of rough inclusions are defined and based on them methods for inducing granular structures from data are highlighted. The resulting granular structures are subjected to classifying algorithms, notably k—nearest neighbors and bayesian classifiers. Experimental results are given in detail both in tabular and visualized form for fourteen data sets from UCI data repository. A striking feature of granular classifiers obtained by this approach is that preserving the accuracy of them on original data, they reduce substantially the size of the granulated data set as well as the set of granular decision rules. This feature makes the presented approach attractive in cases where a small number of rules providing a high classification accuracy is desirable. As basic algorithms used throughout the text are explained and illustrated with hand examples, the book may also serve as a textbook.

Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation

Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation PDF Author: Yao, JingTao
Publisher: IGI Global
ISBN: 1605663255
Category : Education
Languages : en
Pages : 569

Get Book Here

Book Description
"This book investigages granular computing (GrC), which emerged as one of the fastest growing information processing paradigms in computational intelligence and human-centric systems"--Provided by publisher.

Handbook of Granular Computing

Handbook of Granular Computing PDF Author: Witold Pedrycz
Publisher: John Wiley & Sons
ISBN: 0470724153
Category : Technology & Engineering
Languages : en
Pages : 1148

Get Book Here

Book Description
Although the notion is a relatively recent one, the notions and principles of Granular Computing (GrC) have appeared in a different guise in many related fields including granularity in Artificial Intelligence, interval computing, cluster analysis, quotient space theory and many others. Recent years have witnessed a renewed and expanding interest in the topic as it begins to play a key role in bioinformatics, e-commerce, machine learning, security, data mining and wireless mobile computing when it comes to the issues of effectiveness, robustness and uncertainty. The Handbook of Granular Computing offers a comprehensive reference source for the granular computing community, edited by and with contributions from leading experts in the field. Includes chapters covering the foundations of granular computing, interval analysis and fuzzy set theory; hybrid methods and models of granular computing; and applications and case studies. Divided into 5 sections: Preliminaries, Fundamentals, Methodology and Algorithms, Development of Hybrid Models and Applications and Case Studies. Presents the flow of ideas in a systematic, well-organized manner, starting with the concepts and motivation and proceeding to detailed design that materializes in specific algorithms, applications and case studies. Provides the reader with a self-contained reference that includes all pre-requisite knowledge, augmented with step-by-step explanations of more advanced concepts. The Handbook of Granular Computing represents a significant and valuable contribution to the literature and will appeal to a broad audience including researchers, students and practitioners in the fields of Computational Intelligence, pattern recognition, fuzzy sets and neural networks, system modelling, operations research and bioinformatics.

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing

Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing PDF Author: Dominik Ślęzak
Publisher: Springer Science & Business Media
ISBN: 3540286535
Category : Computers
Languages : en
Pages : 764

Get Book Here

Book Description
The two volume set LNAI 3641 and LNAI 3642 constitutes the refereed proceedings of the 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC 2005, held in Regina, Canada in August/September 2005. The 119 revised full papers presented were carefully reviewed and selected from a total of 277 submissions. They comprise the two volumes together with 6 invited papers, 22 approved workshop papers, and 5 special section papers that all were carefully selected and thoroughly revised. The first volume includes 75 contributions related to rough set approximations, rough-algebraic foundations, feature selection and reduction, reasoning in information systems, rough-probabilistic approaches, rough-fuzzy hybridization, fuzzy methods in data analysis, evolutionary computing, machine learning, approximate and uncertain reasoning, probabilistic network models, spatial and temporal reasoning, non-standard logics, and granular computing. The second volume contains 77 contributions and deals with rough set software, data mining, hybrid and hierarchical methods, information retrieval, image recognition and processing, multimedia applications, medical applications, web content analysis, business and industrial applications, the approved workshop papers and the papers accepted for a special session on intelligent and sapient systems.

Granular Computing and Intelligent Systems

Granular Computing and Intelligent Systems PDF Author: Witold Pedrycz
Publisher: Springer Science & Business Media
ISBN: 3642198201
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book Here

Book Description
Information granules are fundamental conceptual entities facilitating perception of complex phenomena and contributing to the enhancement of human centricity in intelligent systems. The formal frameworks of information granules and information granulation comprise fuzzy sets, interval analysis, probability, rough sets, and shadowed sets, to name only a few representatives. Among current developments of Granular Computing, interesting options concern information granules of higher order and of higher type. The higher order information granularity is concerned with an effective formation of information granules over the space being originally constructed by information granules of lower order. This construct is directly associated with the concept of hierarchy of systems composed of successive processing layers characterized by the increasing levels of abstraction. This idea of layered, hierarchical realization of models of complex systems has gained a significant level of visibility in fuzzy modeling with the well-established concept of hierarchical fuzzy models where one strives to achieve a sound tradeoff between accuracy and a level of detail captured by the model and its level of interpretability. Higher type information granules emerge when the information granules themselves cannot be fully characterized in a purely numerical fashion but instead it becomes convenient to exploit their realization in the form of other types of information granules such as type-2 fuzzy sets, interval-valued fuzzy sets, or probabilistic fuzzy sets. Higher order and higher type of information granules constitute the focus of the studies on Granular Computing presented in this study. The book elaborates on sound methodologies of Granular Computing, algorithmic pursuits and an array of diverse applications and case studies in environmental studies, option price forecasting, and power engineering.

Rough Set Theory and Granular Computing

Rough Set Theory and Granular Computing PDF Author: Masahiro Inuiguchi
Publisher: Springer Science & Business Media
ISBN: 9783540005742
Category : Computers
Languages : en
Pages : 330

Get Book Here

Book Description
This monograph presents novel approaches and new results in fundamentals and applications related to rough sets and granular computing. It includes the application of rough sets to real world problems, such as data mining, decision support and sensor fusion. The relationship of rough sets to other important methods of data analysis – Bayes theorem, neurocomputing and pattern recognition is thoroughly examined. Another issue is the rough set based data analysis, including the study of decision making in conflict situations. Recent engineering applications of rough set theory are given, including a processor architecture organization for fast implementation of basic rough set operations and results concerning advanced image processing for unmanned aerial vehicles. New emerging areas of study and applications are presented as well as a wide spectrum of on-going research, which makes the book valuable to all interested in the field of rough set theory and granular computing.

Rough Sets and Current Trends in Computing

Rough Sets and Current Trends in Computing PDF Author: James J. Alpigini
Publisher: Springer
ISBN: 3540458131
Category : Computers
Languages : en
Pages : 654

Get Book Here

Book Description
This volume contains the papers selected for presentation at the Third Inter- tional Conference on Rough Sets and Current Trends in Computing (RSCTC 2002) held at Penn State Great Valley, Malvern, Pennsylvania, U.S.A., 14–16 October 2002. Rough set theoryand its applications constitute a branch of soft computing that has exhibited a signi?cant growth rate during recent years. RSCTC 2002 provided a forum for exchanging ideas among manyresearchers in the rough set communityand in various areas of soft computing and served as a stimulus for mutual understanding and cooperation. In recent years, there have been a number of advances in rough set theoryand applications. Hence, we have witnessed a growing number of international workshops on rough sets and their applications. In addition, it should be observed that one of the beauties of rough sets and the rough set philosophyis that it tends to complement and reinforce research in manytraditional research areas and applications. This is the main reason that manyinternational conferences are now including rough sets into the list of topics.

Thriving Rough Sets

Thriving Rough Sets PDF Author: Guoyin Wang
Publisher: Springer
ISBN: 3319549669
Category : Technology & Engineering
Languages : en
Pages : 433

Get Book Here

Book Description
This special book is dedicated to the memory of Professor Zdzisław Pawlak, the father of rough set theory, in order to commemorate both the 10th anniversary of his passing and 35 years of rough set theory. The book consists of 20 chapters distributed into four sections, which focus in turn on a historical review of Professor Zdzisław Pawlak and rough set theory; a review of the theory of rough sets; the state of the art of rough set theory; and major developments in rough set based data mining approaches. Apart from Professor Pawlak’s contributions to rough set theory, other areas he was interested in are also included. Moreover, recent theoretical studies and advances in applications are also presented. The book will offer a useful guide for researchers in Knowledge Engineering and Data Mining by suggesting new approaches to solving the problems they encounter.

Rough Sets

Rough Sets PDF Author: Z. Pawlak
Publisher: Springer Science & Business Media
ISBN: 9401135347
Category : Computers
Languages : en
Pages : 247

Get Book Here

Book Description
To-date computers are supposed to store and exploit knowledge. At least that is one of the aims of research fields such as Artificial Intelligence and Information Systems. However, the problem is to understand what knowledge means, to find ways of representing knowledge, and to specify automated machineries that can extract useful information from stored knowledge. Knowledge is something people have in their mind, and which they can express through natural language. Knowl edge is acquired not only from books, but also from observations made during experiments; in other words, from data. Changing data into knowledge is not a straightforward task. A set of data is generally disorganized, contains useless details, although it can be incomplete. Knowledge is just the opposite: organized (e.g. laying bare dependencies, or classifications), but expressed by means of a poorer language, i.e. pervaded by imprecision or even vagueness, and assuming a level of granularity. One may say that knowledge is summarized and organized data - at least the kind of knowledge that computers can store.

Rough Sets

Rough Sets PDF Author: Lech Polkowski
Publisher: Springer
ISBN: 3319608401
Category : Computers
Languages : en
Pages : 603

Get Book Here

Book Description
This two-volume set LNAI 10313 and LNAI 10314 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2017, held in Olsztyn, Poland, in July 2017. The 74 revised full papers presented together with 16 short papers and 16 invited talks, were carefully reviewed and selected from 130 submissions. The papers in this two set-volume of IJCRS 2017 follow the track already rutted by RSCTC and JRS conferences which aimed at unification of many facets of rough set theory from theoretical aspects of the rough set idea bordering on theory of concepts and going through algebraic structures, topological structures, logics for uncertain reasoning, decision algorithms, relations to other theories of vagueness and ambiguity, then to extensions of the rough set idea like granular structures, rough mereology, and to applications of the idea in diverse fields of applied science including hybrid methods like rough-fuzzy, neuro-rough, neuro-rough-fuzzy computing. IJCRS 2017 encompasses topics spread among four main tracks: Rough Sets and Data Science (in relation to RSCTC series organized since 1998); Rough Sets and Granular Computing (in relation to RSFDGrC series organized since 1999); Rough Sets and Knowledge Technology (in relation to RSKT series organized since 2006); and Rough Sets and Intelligent Systems (in relation to RSEISP series organized since 2007).