Grain Sorghum Response to Cover Crops Under a No-till System

Grain Sorghum Response to Cover Crops Under a No-till System PDF Author: Matthew Nielsen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Cover crops (CCs) are included in rotations between cash crops for many reasons, including reducing erosion, compaction, and sequestering nutrients for optimal crop performance. The objectives of this study were to i) determine the effects of increasing cropping system intensity on CC biomass accumulation, C:N ratio, and residual inorganic profile nitrogen and ii) determine how intensity effects sorghum (Sorghum bicolor L.) growth, development, and yield in a no-till wheat (Triticum aestivum L.), sorghum, soybean (Glycine max L.) rotation. The experiment was conducted in a randomized complete block design with four treatments: chemical fallow (CF), double-crop soybeans (DSB), double-crop soybeans plus a spring cover crop before sorghum (DSBCC), and a summer cover crop mixture after wheat (CCMIX). Nitrogen (N) rates consisting of 0, 40, 80, 120, and 160 pounds acre−1 were subsurface banded after sorghum planting. Sorghum growth and development were characterized by Canopeo (percent canopy cover) and GreenSeeker (NDVI), from seedling through boot stages, by recording days from planting to half bloom, and by chlorphyll readings (SPAD) at half bloom or early grain fill. Sorghum biomass was sampled after physiological maturity to determine N uptake and yield components. Averaged over three years, summer and fall growth of CCMIX produced the greatest biomass at more than 2,000 pounds acre−1 and had the greatest C:N ratio compared to DSBCC and CCMIX sampled in the spring. Residual inorganic profile N at sorghum planting, when averaged over years, was roughly 26 pounds acre−1 and 13 pounds acre−1 less after DSBCC and CCMIX, respectively compared to after CF and DSB. Including a spring cover crop before sorghum (DSBCC) consistently reduced vegetative growth and development of sorghum.Sorghum growth response to CCMIX was inconsistent depending on year. In 2018, when there was no winter survival of the cover crop, sorghum growth after CCMIX was not different from CF. The CCMIX treatment reduced sorghum SPAD values by 6% and 7% in 2017 and 2019, respectively, and N uptake by 41 and 27 pounds acre−1 in 2017 and 2019, respectively. The spring cover crop immediately before sorghum planting (DSBCC) reduced sorghum biomass by 9% (2017) and 27% (2018) compared to CF, though CF was not different from DSB and CCMIX. In 2019, DSBCC was not different from CF, and sorghum after DSB had 10% greater biomass yield than sorghum after DSBCC. Sorghum grain yield was reduced by more than 50% after DSBCC in 2018 compared to CF, though CF, DSB, and CCMIX were not different. In 2019, sorghum grain yields after CF, DSBCC, and CCMIX were not different, and sorghum after DSB had the greatest yields, 7% more than DSBCC. Including double crop or cover crop in a no-till cropping system slowed early-seasoon growth and development and reduced N uptake of the subsequent sorghum crop but had minimal impact on grain yield with adequate weather conditions. However, a spring-planted CC with substantial biomass accumulation immediately before sorghum planting substantially reduced sorghum yield when spring rainfall was below normal.

Grain Sorghum Response to Cover Crops Under a No-till System

Grain Sorghum Response to Cover Crops Under a No-till System PDF Author: Matthew Nielsen
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Cover crops (CCs) are included in rotations between cash crops for many reasons, including reducing erosion, compaction, and sequestering nutrients for optimal crop performance. The objectives of this study were to i) determine the effects of increasing cropping system intensity on CC biomass accumulation, C:N ratio, and residual inorganic profile nitrogen and ii) determine how intensity effects sorghum (Sorghum bicolor L.) growth, development, and yield in a no-till wheat (Triticum aestivum L.), sorghum, soybean (Glycine max L.) rotation. The experiment was conducted in a randomized complete block design with four treatments: chemical fallow (CF), double-crop soybeans (DSB), double-crop soybeans plus a spring cover crop before sorghum (DSBCC), and a summer cover crop mixture after wheat (CCMIX). Nitrogen (N) rates consisting of 0, 40, 80, 120, and 160 pounds acre−1 were subsurface banded after sorghum planting. Sorghum growth and development were characterized by Canopeo (percent canopy cover) and GreenSeeker (NDVI), from seedling through boot stages, by recording days from planting to half bloom, and by chlorphyll readings (SPAD) at half bloom or early grain fill. Sorghum biomass was sampled after physiological maturity to determine N uptake and yield components. Averaged over three years, summer and fall growth of CCMIX produced the greatest biomass at more than 2,000 pounds acre−1 and had the greatest C:N ratio compared to DSBCC and CCMIX sampled in the spring. Residual inorganic profile N at sorghum planting, when averaged over years, was roughly 26 pounds acre−1 and 13 pounds acre−1 less after DSBCC and CCMIX, respectively compared to after CF and DSB. Including a spring cover crop before sorghum (DSBCC) consistently reduced vegetative growth and development of sorghum.Sorghum growth response to CCMIX was inconsistent depending on year. In 2018, when there was no winter survival of the cover crop, sorghum growth after CCMIX was not different from CF. The CCMIX treatment reduced sorghum SPAD values by 6% and 7% in 2017 and 2019, respectively, and N uptake by 41 and 27 pounds acre−1 in 2017 and 2019, respectively. The spring cover crop immediately before sorghum planting (DSBCC) reduced sorghum biomass by 9% (2017) and 27% (2018) compared to CF, though CF was not different from DSB and CCMIX. In 2019, DSBCC was not different from CF, and sorghum after DSB had 10% greater biomass yield than sorghum after DSBCC. Sorghum grain yield was reduced by more than 50% after DSBCC in 2018 compared to CF, though CF, DSB, and CCMIX were not different. In 2019, sorghum grain yields after CF, DSBCC, and CCMIX were not different, and sorghum after DSB had the greatest yields, 7% more than DSBCC. Including double crop or cover crop in a no-till cropping system slowed early-seasoon growth and development and reduced N uptake of the subsequent sorghum crop but had minimal impact on grain yield with adequate weather conditions. However, a spring-planted CC with substantial biomass accumulation immediately before sorghum planting substantially reduced sorghum yield when spring rainfall was below normal.

Managing Cover Crops Profitably (3rd Ed. )

Managing Cover Crops Profitably (3rd Ed. ) PDF Author: Andy Clark
Publisher: DIANE Publishing
ISBN: 1437903797
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book Here

Book Description
Cover crops slow erosion, improve soil, smother weeds, enhance nutrient and moisture availability, help control many pests and bring a host of other benefits to your farm. At the same time, they can reduce costs, increase profits and even create new sources of income. You¿ll reap dividends on your cover crop investments for years, since their benefits accumulate over the long term. This book will help you find which ones are right for you. Captures farmer and other research results from the past ten years. The authors verified the info. from the 2nd ed., added new results and updated farmer profiles and research data, and added 2 chap. Includes maps and charts, detailed narratives about individual cover crop species, and chap. about aspects of cover cropping.

The No-Till Organic Vegetable Farm

The No-Till Organic Vegetable Farm PDF Author: Daniel Mays
Publisher: Storey Publishing, LLC
ISBN: 1635861896
Category : Gardening
Languages : en
Pages : 241

Get Book Here

Book Description
No-till — a method of growing crops and providing pasture without disturbing the soil — has become an important alternative to standard farming practices. In this comprehensive guide to successful no-till vegetable farming for aspiring and beginning farmers, author Daniel Mays, owner and manager of an organic no-till farm in Maine, outlines the environmental, social, and economic benefits of this system. The methods described are designed for implementation at the human scale, relying primarily on human power, with minimal use of machinery. The book presents streamlined planning and record-keeping tools as well as marketing strategies, and outlines community engagement programs like CSA, food justice initiatives, and on-farm education.

Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate

Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate PDF Author: Sterling Robertson Olsen
Publisher:
ISBN:
Category : Soils
Languages : en
Pages : 20

Get Book Here

Book Description


Building Soils for Better Crops

Building Soils for Better Crops PDF Author: Fred Magdoff
Publisher: Sare
ISBN: 9781888626131
Category : Humus
Languages : en
Pages : 294

Get Book Here

Book Description
"'Published by the Sustainable Agriculture Research and Education (SARE) program, with funding from the National Institute of Food and Agriculture, U.S. Department of Agriculture."

Cover Crops and Sustainable Agriculture

Cover Crops and Sustainable Agriculture PDF Author: Rafiq Islam
Publisher: CRC Press
ISBN: 100040711X
Category : Science
Languages : en
Pages : 327

Get Book Here

Book Description
This book will not serve as the "encyclopedia of cover crop management," but it’s close. The benefits of a wide range of individual cover crops and blends/mixes for specific agronomic crop rotations and geographic locations are included. Descriptions, photographs, and illustrations show how cover crops look in the field, including plant height, leaf architecture, and rooting patterns. Long term benefits are described for soil health, soil structure, water quality, nutrient contributions, soil biodiversity, air quality and climate change. In addition to the "whys" of cover crop use, the book includes details on the "hows:" how to choose cover crops for specific applications and locations; how (and when) to plant; how to manage and maintain the cover for maximum benefit; and how and when to terminate. Planting options include: drilling/planting between rows of an agronomic crop at planting time, or when the crop is short (i.e. corn in early June); "aerial" seeding with an airplane or high-clearance machine shortly before the crop reaches maturity; and drilling/planting immediately after harvest of the agronomic crop. Selected cover crops (blends) can help with pest and disease management. Cover crops are an economic input with an expected return on investment, similar to pesticides and fertilizer. As part of a continuous no-till system, cover crops provide long-term biological, chemical and structural benefits. The resulting increase in soil organic matter means the agronomic crop yields benefit from better water infiltration and water holding capacity, greater availability of nitrogen and other nutrients, deeper rooting, and increased soil microbial activity in the root zone.

Effects of Legume Cover Crops and Tillage on Grain Sorghum and Selected Soil Properties

Effects of Legume Cover Crops and Tillage on Grain Sorghum and Selected Soil Properties PDF Author: Md. Mukhlesur Rahman
Publisher:
ISBN:
Category : Cover crops
Languages : en
Pages : 162

Get Book Here

Book Description


Soil Management

Soil Management PDF Author: Jerry L. Hatfield
Publisher: John Wiley & Sons
ISBN: 0891188533
Category : Technology & Engineering
Languages : en
Pages : 432

Get Book Here

Book Description
Degradation of soils continues at a pace that will eventually create a local, regional, or even global crisis when diminished soil resources collide with increasing climate variation. It's not too late to restore our soils to a more productive state by rediscovering the value of soil management, building on our well-established and ever-expanding scientific understanding of soils. Soil management concepts have been in place since the cultivation of crops, but we need to rediscover the principles that are linked together in effective soil management. This book is unique because of its treatment of soil management based on principles—the physical, chemical, and biological processes and how together they form the foundation for soil management processes that range from tillage to nutrient management. Whether new to soil science or needing a concise reference, readers will benefit from this book's ability to integrate the science of soils with management issues and long-term conservation efforts.

Cover Crops in West Africa

Cover Crops in West Africa PDF Author: International Development Research Centre (Canada)
Publisher: IDRC
ISBN: 088936852X
Category : Cover crops
Languages : en
Pages : 319

Get Book Here

Book Description
Cover Crops in West Africa Contributing to Sustainable Agriculture

Cover Cropping in Vineyards

Cover Cropping in Vineyards PDF Author: Chuck A. Ingels
Publisher: University of California, Agriculture and Natural Resources
ISBN: 9781879906358
Category : Technology & Engineering
Languages : en
Pages : 172

Get Book Here

Book Description
This guide features cutting-edge methods for using cover crops to enhance vineyard performance. Based on extensive research, this guide details technical and theoretical information on how cover crops affect vineyards and promote ecological stability. With how-to instructions for activities such as field application, this practical reference is a must-have for vineyard owners, managers, consultants, and pest control advisers.