Golden Linear Algebra

Golden Linear Algebra PDF Author: Prakash Om
Publisher: Firewall Media
ISBN: 9788170081500
Category : Algebras, Linear
Languages : en
Pages : 308

Get Book Here

Book Description

Golden Linear Algebra

Golden Linear Algebra PDF Author: Prakash Om
Publisher: Firewall Media
ISBN: 9788170081500
Category : Algebras, Linear
Languages : en
Pages : 308

Get Book Here

Book Description


Linear Algebra for Everyone

Linear Algebra for Everyone PDF Author: Gilbert Strang
Publisher: Wellesley-Cambridge Press
ISBN: 9781733146630
Category : Mathematics
Languages : en
Pages : 368

Get Book Here

Book Description
Linear algebra has become the subject to know for people in quantitative disciplines of all kinds. No longer the exclusive domain of mathematicians and engineers, it is now used everywhere there is data and everybody who works with data needs to know more. This new book from Professor Gilbert Strang, author of the acclaimed Introduction to Linear Algebra, now in its fifth edition, makes linear algebra accessible to everybody, not just those with a strong background in mathematics. It takes a more active start, beginning by finding independent columns of small matrices, leading to the key concepts of linear combinations and rank and column space. From there it passes on to the classical topics of solving linear equations, orthogonality, linear transformations and subspaces, all clearly explained with many examples and exercises. The last major topics are eigenvalues and the important singular value decomposition, illustrated with applications to differential equations and image compression. A final optional chapter explores the ideas behind deep learning.

Trace Ideals and Their Applications

Trace Ideals and Their Applications PDF Author: Barry Simon
Publisher: American Mathematical Soc.
ISBN: 0821849883
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
From a review of the first edition: Beautifully written and well organized ... indispensable for those interested in certain areas of mathematical physics ... for the expert and beginner alike. The author deserves to be congratulated both for his work in unifying a subject and for showing workers in the field new directions for future development. --Zentralblatt MATH This is a second edition of a well-known book on the theory of trace ideals in the algebra of operators in a Hilbert space. Because of the theory's many different applications, the book was widely used and much in demand. For this second edition, the author has added four chapters on the closely related theory of rank one perturbations of self-adjoint operators. He has also included a comprehensive index and an addendum describing some developments since the original notes were published. This book continues to be a vital source of information for those interested in the theory of trace ideals and in its applications to various areas of mathematical physics.

Matrix and Operator Equations and Applications

Matrix and Operator Equations and Applications PDF Author: Mohammad Sal Moslehian
Publisher: Springer Nature
ISBN: 3031253868
Category : Mathematics
Languages : en
Pages : 763

Get Book Here

Book Description
This book concerns matrix and operator equations that are widely applied in various disciplines of science to formulate challenging problems and solve them in a faithful way. The main aim of this contributed book is to study several important matrix and operator equalities and equations in a systematic and self-contained fashion. Some powerful methods have been used to investigate some significant equations in functional analysis, operator theory, matrix analysis, and numerous subjects in the last decades. The book is divided into two parts: (I) Matrix Equations and (II) Operator Equations. In the first part, the state-of-the-art of systems of matrix equations is given and generalized inverses are used to find their solutions. The semi-tensor product of matrices is used to solve quaternion matrix equations. The contents of some chapters are related to the relationship between matrix inequalities, matrix means, numerical range, and matrix equations. In addition, quaternion algebras and their applications are employed in solving some famous matrix equations like Sylvester, Stein, and Lyapunov equations. A chapter devoted to studying Hermitian polynomial matrix equations, which frequently arise from linear-quadratic control problems. Moreover, some classical and recently discovered inequalities for matrix exponentials are reviewed. In the second part, the latest developments in solving several equations appearing in modern operator theory are demonstrated. These are of interest to a wide audience of pure and applied mathematicians. For example, the Daugavet equation in the linear and nonlinear setting, iterative processes and Volterra-Fredholm integral equations, semicircular elements induced by connected finite graphs, free probability, singular integral operators with shifts, and operator differential equations closely related to the properties of the coefficient operators in some equations are discussed. The chapters give a comprehensive account of their subjects. The exhibited chapters are written in a reader-friendly style and can be read independently. Each chapter contains a rich bibliography. This book is intended for use by both researchers and graduate students of mathematics, physics, and engineering.

Golden Real Analysis

Golden Real Analysis PDF Author: N.P. Bali
Publisher: Firewall Media
ISBN: 9788170080145
Category : Mathematical analysis
Languages : en
Pages : 822

Get Book Here

Book Description


Five Golden Rules

Five Golden Rules PDF Author: John Casti
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
In Five Golden Rules, John L. Casti serves as curator to a brilliant collection of 20th-century mathematical theories, leading us on a fascinating journey of discovery and insight. Probing the frontiers of modern mathematics, Casti examines the origins of some of the most important findings of this century. This is a tale of mystery and logic, elegance and reason; it is the story of five monumental mathematical breakthroughs and how they shape our lives. All those intrigued by the mathematical process, nonacademics and professionals alike, will find this an enlightening, eye-opening, and entertaining work. High school algebra or geometry - and enthusiasm - are the only prerequisites. From the theorem that provided the impetus for modern computers to the calculations that sent the first men to the Moon, these breakthroughs have transformed our lives. Casti illustrates each theorem with a dazzling array of real-world problems it has helped solve - how to calculate the shape of space, optimize investment returns, even chart the course of the development of organisms. Along the way, we meet the leading thinkers of the day: John von Neumann, L. E. J. Brouwer, Marston Morse, and Alan Turing, among others. And we come to understand the combination of circumstances that led each to such revolutionary discoveries as the Minimax Theorem, which spawned the exciting field of game theory, and the Simplex Method, which underpins the powerful tools of optimization theory.

Matrix Analysis

Matrix Analysis PDF Author: Rajendra Bhatia
Publisher: Springer Science & Business Media
ISBN: 1461206537
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.

Statistical Machine Learning

Statistical Machine Learning PDF Author: Richard Golden
Publisher: CRC Press
ISBN: 1351051490
Category : Computers
Languages : en
Pages : 525

Get Book Here

Book Description
The recent rapid growth in the variety and complexity of new machine learning architectures requires the development of improved methods for designing, analyzing, evaluating, and communicating machine learning technologies. Statistical Machine Learning: A Unified Framework provides students, engineers, and scientists with tools from mathematical statistics and nonlinear optimization theory to become experts in the field of machine learning. In particular, the material in this text directly supports the mathematical analysis and design of old, new, and not-yet-invented nonlinear high-dimensional machine learning algorithms. Features: Unified empirical risk minimization framework supports rigorous mathematical analyses of widely used supervised, unsupervised, and reinforcement machine learning algorithms Matrix calculus methods for supporting machine learning analysis and design applications Explicit conditions for ensuring convergence of adaptive, batch, minibatch, MCEM, and MCMC learning algorithms that minimize both unimodal and multimodal objective functions Explicit conditions for characterizing asymptotic properties of M-estimators and model selection criteria such as AIC and BIC in the presence of possible model misspecification This advanced text is suitable for graduate students or highly motivated undergraduate students in statistics, computer science, electrical engineering, and applied mathematics. The text is self-contained and only assumes knowledge of lower-division linear algebra and upper-division probability theory. Students, professional engineers, and multidisciplinary scientists possessing these minimal prerequisites will find this text challenging yet accessible. About the Author: Richard M. Golden (Ph.D., M.S.E.E., B.S.E.E.) is Professor of Cognitive Science and Participating Faculty Member in Electrical Engineering at the University of Texas at Dallas. Dr. Golden has published articles and given talks at scientific conferences on a wide range of topics in the fields of both statistics and machine learning over the past three decades. His long-term research interests include identifying conditions for the convergence of deterministic and stochastic machine learning algorithms and investigating estimation and inference in the presence of possibly misspecified probability models.

Linear Algebra and Matrices

Linear Algebra and Matrices PDF Author: Shmuel Friedland
Publisher: SIAM
ISBN: 161197514X
Category : Mathematics
Languages : en
Pages : 301

Get Book Here

Book Description
This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.

Abstract Algebra

Abstract Algebra PDF Author: Thomas Judson
Publisher: Orthogonal Publishing L3c
ISBN: 9781944325190
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.