Getting Started with Beautiful Soup

Getting Started with Beautiful Soup PDF Author: Vineeth G. Nair
Publisher: Packt Publishing Ltd
ISBN: 1783289562
Category : Computers
Languages : en
Pages : 190

Get Book Here

Book Description
This book is a practical, hands-on guide that takes you through the techniques of web scraping using Beautiful Soup. Getting Started with Beautiful Soup is great for anybody who is interested in website scraping and extracting information. However, a basic knowledge of Python, HTML tags, and CSS is required for better understanding.

Getting Started with Beautiful Soup

Getting Started with Beautiful Soup PDF Author: Vineeth G. Nair
Publisher: Packt Publishing Ltd
ISBN: 1783289562
Category : Computers
Languages : en
Pages : 190

Get Book Here

Book Description
This book is a practical, hands-on guide that takes you through the techniques of web scraping using Beautiful Soup. Getting Started with Beautiful Soup is great for anybody who is interested in website scraping and extracting information. However, a basic knowledge of Python, HTML tags, and CSS is required for better understanding.

Web Scraping with Python

Web Scraping with Python PDF Author: Ryan Mitchell
Publisher: "O'Reilly Media, Inc."
ISBN: 1491910259
Category : Computers
Languages : en
Pages : 264

Get Book Here

Book Description
Learn web scraping and crawling techniques to access unlimited data from any web source in any format. With this practical guide, you’ll learn how to use Python scripts and web APIs to gather and process data from thousands—or even millions—of web pages at once. Ideal for programmers, security professionals, and web administrators familiar with Python, this book not only teaches basic web scraping mechanics, but also delves into more advanced topics, such as analyzing raw data or using scrapers for frontend website testing. Code samples are available to help you understand the concepts in practice. Learn how to parse complicated HTML pages Traverse multiple pages and sites Get a general overview of APIs and how they work Learn several methods for storing the data you scrape Download, read, and extract data from documents Use tools and techniques to clean badly formatted data Read and write natural languages Crawl through forms and logins Understand how to scrape JavaScript Learn image processing and text recognition

Website Scraping with Python

Website Scraping with Python PDF Author: Gábor László Hajba
Publisher:
ISBN:
Category : Python (Computer program language)
Languages : en
Pages :

Get Book Here

Book Description
Offering road-tested techniques for website scraping and solutions to common issues developers may face, this concise and focused book provides tips and tweaking guidance for the popular scraping tools BeautifulSoup and Scrapy. --

Data Wrangling with Python

Data Wrangling with Python PDF Author: Dr. Tirthajyoti Sarkar
Publisher: Packt Publishing Ltd
ISBN: 1789804248
Category : Computers
Languages : en
Pages : 453

Get Book Here

Book Description
Simplify your ETL processes with these hands-on data hygiene tips, tricks, and best practices. Key FeaturesFocus on the basics of data wranglingStudy various ways to extract the most out of your data in less timeBoost your learning curve with bonus topics like random data generation and data integrity checksBook Description For data to be useful and meaningful, it must be curated and refined. Data Wrangling with Python teaches you the core ideas behind these processes and equips you with knowledge of the most popular tools and techniques in the domain. The book starts with the absolute basics of Python, focusing mainly on data structures. It then delves into the fundamental tools of data wrangling like NumPy and Pandas libraries. You’ll explore useful insights into why you should stay away from traditional ways of data cleaning, as done in other languages, and take advantage of the specialized pre-built routines in Python. This combination of Python tips and tricks will also demonstrate how to use the same Python backend and extract/transform data from an array of sources including the Internet, large database vaults, and Excel financial tables. To help you prepare for more challenging scenarios, you’ll cover how to handle missing or wrong data, and reformat it based on the requirements from the downstream analytics tool. The book will further help you grasp concepts through real-world examples and datasets. By the end of this book, you will be confident in using a diverse array of sources to extract, clean, transform, and format your data efficiently. What you will learnUse and manipulate complex and simple data structuresHarness the full potential of DataFrames and numpy.array at run timePerform web scraping with BeautifulSoup4 and html5libExecute advanced string search and manipulation with RegEXHandle outliers and perform data imputation with PandasUse descriptive statistics and plotting techniquesPractice data wrangling and modeling using data generation techniquesWho this book is for Data Wrangling with Python is designed for developers, data analysts, and business analysts who are keen to pursue a career as a full-fledged data scientist or analytics expert. Although, this book is for beginners, prior working knowledge of Python is necessary to easily grasp the concepts covered here. It will also help to have rudimentary knowledge of relational database and SQL.

Practical Web Scraping for Data Science

Practical Web Scraping for Data Science PDF Author: Seppe vanden Broucke
Publisher: Apress
ISBN: 1484235827
Category : Computers
Languages : en
Pages : 313

Get Book Here

Book Description
This book provides a complete and modern guide to web scraping, using Python as the programming language, without glossing over important details or best practices. Written with a data science audience in mind, the book explores both scraping and the larger context of web technologies in which it operates, to ensure full understanding. The authors recommend web scraping as a powerful tool for any data scientist’s arsenal, as many data science projects start by obtaining an appropriate data set. Starting with a brief overview on scraping and real-life use cases, the authors explore the core concepts of HTTP, HTML, and CSS to provide a solid foundation. Along with a quick Python primer, they cover Selenium for JavaScript-heavy sites, and web crawling in detail. The book finishes with a recap of best practices and a collection of examples that bring together everything you've learned and illustrate various data science use cases. What You'll Learn Leverage well-established best practices and commonly-used Python packages Handle today's web, including JavaScript, cookies, and common web scraping mitigation techniques Understand the managerial and legal concerns regarding web scraping Who This Book is For A data science oriented audience that is probably already familiar with Python or another programming language or analytical toolkit (R, SAS, SPSS, etc). Students or instructors in university courses may also benefit. Readers unfamiliar with Python will appreciate a quick Python primer in chapter 1 to catch up with the basics and provide pointers to other guides as well.

Hands-On Web Scraping with Python

Hands-On Web Scraping with Python PDF Author: Anish Chapagain
Publisher: Packt Publishing Ltd
ISBN: 1789536197
Category : Computers
Languages : en
Pages : 337

Get Book Here

Book Description
Collect and scrape different complexities of data from the modern Web using the latest tools, best practices, and techniques Key Features Learn different scraping techniques using a range of Python libraries such as Scrapy and Beautiful Soup Build scrapers and crawlers to extract relevant information from the web Automate web scraping operations to bridge the accuracy gap and manage complex business needs Book DescriptionWeb scraping is an essential technique used in many organizations to gather valuable data from web pages. This book will enable you to delve into web scraping techniques and methodologies. The book will introduce you to the fundamental concepts of web scraping techniques and how they can be applied to multiple sets of web pages. You'll use powerful libraries from the Python ecosystem such as Scrapy, lxml, pyquery, and bs4 to carry out web scraping operations. You will then get up to speed with simple to intermediate scraping operations such as identifying information from web pages and using patterns or attributes to retrieve information. This book adopts a practical approach to web scraping concepts and tools, guiding you through a series of use cases and showing you how to use the best tools and techniques to efficiently scrape web pages. You'll even cover the use of other popular web scraping tools, such as Selenium, Regex, and web-based APIs. By the end of this book, you will have learned how to efficiently scrape the web using different techniques with Python and other popular tools.What you will learn Analyze data and information from web pages Learn how to use browser-based developer tools from the scraping perspective Use XPath and CSS selectors to identify and explore markup elements Learn to handle and manage cookies Explore advanced concepts in handling HTML forms and processing logins Optimize web securities, data storage, and API use to scrape data Use Regex with Python to extract data Deal with complex web entities by using Selenium to find and extract data Who this book is for This book is for Python programmers, data analysts, web scraping newbies, and anyone who wants to learn how to perform web scraping from scratch. If you want to begin your journey in applying web scraping techniques to a range of web pages, then this book is what you need! A working knowledge of the Python programming language is expected.

Python Crash Course

Python Crash Course PDF Author: Eric Matthes
Publisher: No Starch Press
ISBN: 1593277393
Category : Computers
Languages : en
Pages : 564

Get Book Here

Book Description
Python Crash Course is a fast-paced, thorough introduction to Python that will have you writing programs, solving problems, and making things that work in no time. In the first half of the book, you’ll learn about basic programming concepts, such as lists, dictionaries, classes, and loops, and practice writing clean and readable code with exercises for each topic. You’ll also learn how to make your programs interactive and how to test your code safely before adding it to a project. In the second half of the book, you’ll put your new knowledge into practice with three substantial projects: a Space Invaders–inspired arcade game, data visualizations with Python’s super-handy libraries, and a simple web app you can deploy online. As you work through Python Crash Course you’ll learn how to: –Use powerful Python libraries and tools, including matplotlib, NumPy, and Pygal –Make 2D games that respond to keypresses and mouse clicks, and that grow more difficult as the game progresses –Work with data to generate interactive visualizations –Create and customize Web apps and deploy them safely online –Deal with mistakes and errors so you can solve your own programming problems If you’ve been thinking seriously about digging into programming, Python Crash Course will get you up to speed and have you writing real programs fast. Why wait any longer? Start your engines and code! Uses Python 2 and 3

Learning Scrapy

Learning Scrapy PDF Author: Dimitris Kouzis - Loukas
Publisher:
ISBN: 9781784399788
Category : Computers
Languages : en
Pages : 270

Get Book Here

Book Description
Learn the art of efficient web scraping and crawling with PythonAbout This Book• Extract data from any source to perform real time analytics.• Full of techniques and examples to help you crawl websites and extract data within hours.• A hands-on guide to web scraping and crawling with real-life problems and solutionsWho This Book Is ForIf you are a software developer, data scientist, NLP or machine-learning enthusiast or just need to migrate your company's wiki from a legacy platform, then this book is for you. It is perfect for someone , who needs instant access to large amounts of semi-structured data effortlessly.What You Will Learn• Understand HTML pages and write XPath to extract the data you need• Write Scrapy spiders with simple Python and do web crawls• Push your data into any database, search engine or analytics system• Configure your spider to download files, images and use proxies• Create efficient pipelines that shape data in precisely the form you want• Use Twisted Asynchronous API to process hundreds of items concurrently• Make your crawler super-fast by learning how to tune Scrapy's performance• Perform large scale distributed crawls with scrapyd and scrapinghubIn DetailThis book covers the long awaited Scrapy v 1.0 that empowers you to extract useful data from virtually any source with very little effort. It starts off by explaining the fundamentals of Scrapy framework, followed by a thorough description of how to extract data from any source, clean it up, shape it as per your requirement using Python and 3rd party APIs. Next you will be familiarised with the process of storing the scrapped data in databases as well as search engines and performing real time analytics on them with Spark Streaming. By the end of this book, you will perfect the art of scarping data for your applications with easeStyle and approachIt is a hands on guide, with first few chapters written as a tutorial, aiming to motivate you and get you started quickly. As the book progresses, more advanced features are explained with real world examples that can be reffered while developing your own web applications.

Getting Structured Data from the Internet

Getting Structured Data from the Internet PDF Author: Jay M. Patel
Publisher: Apress
ISBN: 9781484265758
Category : Computers
Languages : en
Pages : 325

Get Book Here

Book Description
Utilize web scraping at scale to quickly get unlimited amounts of free data available on the web into a structured format. This book teaches you to use Python scripts to crawl through websites at scale and scrape data from HTML and JavaScript-enabled pages and convert it into structured data formats such as CSV, Excel, JSON, or load it into a SQL database of your choice. This book goes beyond the basics of web scraping and covers advanced topics such as natural language processing (NLP) and text analytics to extract names of people, places, email addresses, contact details, etc., from a page at production scale using distributed big data techniques on an Amazon Web Services (AWS)-based cloud infrastructure. It book covers developing a robust data processing and ingestion pipeline on the Common Crawl corpus, containing petabytes of data publicly available and a web crawl data set available on AWS's registry of open data. Getting Structured Data from the Internet also includes a step-by-step tutorial on deploying your own crawlers using a production web scraping framework (such as Scrapy) and dealing with real-world issues (such as breaking Captcha, proxy IP rotation, and more). Code used in the book is provided to help you understand the concepts in practice and write your own web crawler to power your business ideas. What You Will Learn Understand web scraping, its applications/uses, and how to avoid web scraping by hitting publicly available rest API endpoints to directly get data Develop a web scraper and crawler from scratch using lxml and BeautifulSoup library, and learn about scraping from JavaScript-enabled pages using Selenium Use AWS-based cloud computing with EC2, S3, Athena, SQS, and SNS to analyze, extract, and store useful insights from crawled pages Use SQL language on PostgreSQL running on Amazon Relational Database Service (RDS) and SQLite using SQLalchemy Review sci-kit learn, Gensim, and spaCy to perform NLP tasks on scraped web pages such as name entity recognition, topic clustering (Kmeans, Agglomerative Clustering), topic modeling (LDA, NMF, LSI), topic classification (naive Bayes, Gradient Boosting Classifier) and text similarity (cosine distance-based nearest neighbors) Handle web archival file formats and explore Common Crawl open data on AWS Illustrate practical applications for web crawl data by building a similar website tool and a technology profiler similar to builtwith.com Write scripts to create a backlinks database on a web scale similar to Ahrefs.com, Moz.com, Majestic.com, etc., for search engine optimization (SEO), competitor research, and determining website domain authority and ranking Use web crawl data to build a news sentiment analysis system or alternative financial analysis covering stock market trading signals Write a production-ready crawler in Python using Scrapy framework and deal with practical workarounds for Captchas, IP rotation, and more Who This Book Is For Primary audience: data analysts and scientists with little to no exposure to real-world data processing challenges, secondary: experienced software developers doing web-heavy data processing who need a primer, tertiary: business owners and startup founders who need to know more about implementation to better direct their technical team

Learn Python by Building Data Science Applications

Learn Python by Building Data Science Applications PDF Author: Philipp Kats
Publisher: Packt Publishing Ltd
ISBN: 1789533066
Category : Computers
Languages : en
Pages : 464

Get Book Here

Book Description
Understand the constructs of the Python programming language and use them to build data science projects Key FeaturesLearn the basics of developing applications with Python and deploy your first data applicationTake your first steps in Python programming by understanding and using data structures, variables, and loopsDelve into Jupyter, NumPy, Pandas, SciPy, and sklearn to explore the data science ecosystem in PythonBook Description Python is the most widely used programming language for building data science applications. Complete with step-by-step instructions, this book contains easy-to-follow tutorials to help you learn Python and develop real-world data science projects. The “secret sauce” of the book is its curated list of topics and solutions, put together using a range of real-world projects, covering initial data collection, data analysis, and production. This Python book starts by taking you through the basics of programming, right from variables and data types to classes and functions. You’ll learn how to write idiomatic code and test and debug it, and discover how you can create packages or use the range of built-in ones. You’ll also be introduced to the extensive ecosystem of Python data science packages, including NumPy, Pandas, scikit-learn, Altair, and Datashader. Furthermore, you’ll be able to perform data analysis, train models, and interpret and communicate the results. Finally, you’ll get to grips with structuring and scheduling scripts using Luigi and sharing your machine learning models with the world as a microservice. By the end of the book, you’ll have learned not only how to implement Python in data science projects, but also how to maintain and design them to meet high programming standards. What you will learnCode in Python using Jupyter and VS CodeExplore the basics of coding – loops, variables, functions, and classesDeploy continuous integration with Git, Bash, and DVCGet to grips with Pandas, NumPy, and scikit-learnPerform data visualization with Matplotlib, Altair, and DatashaderCreate a package out of your code using poetry and test it with PyTestMake your machine learning model accessible to anyone with the web APIWho this book is for If you want to learn Python or data science in a fun and engaging way, this book is for you. You’ll also find this book useful if you’re a high school student, researcher, analyst, or anyone with little or no coding experience with an interest in the subject and courage to learn, fail, and learn from failing. A basic understanding of how computers work will be useful.