Author: Edward R. Fadell
Publisher: Springer Science & Business Media
ISBN: 3642564461
Category : Mathematics
Languages : en
Pages : 314
Book Description
With applications in mind, this self-contained monograph provides a coherent and thorough treatment of the configuration spaces of Euclidean spaces and spheres, making the subject accessible to researchers and graduates with a minimal background in classical homotopy theory and algebraic topology.
Geometry and Topology of Configuration Spaces
Author: Edward R. Fadell
Publisher: Springer Science & Business Media
ISBN: 3642564461
Category : Mathematics
Languages : en
Pages : 314
Book Description
With applications in mind, this self-contained monograph provides a coherent and thorough treatment of the configuration spaces of Euclidean spaces and spheres, making the subject accessible to researchers and graduates with a minimal background in classical homotopy theory and algebraic topology.
Publisher: Springer Science & Business Media
ISBN: 3642564461
Category : Mathematics
Languages : en
Pages : 314
Book Description
With applications in mind, this self-contained monograph provides a coherent and thorough treatment of the configuration spaces of Euclidean spaces and spheres, making the subject accessible to researchers and graduates with a minimal background in classical homotopy theory and algebraic topology.
Cohomological Methods in Homotopy Theory
Author: Jaume Aguade
Publisher: Birkhäuser
ISBN: 3034883129
Category : Mathematics
Languages : en
Pages : 413
Book Description
This book contains a collection of articles summarizing the state of knowledge in a large portion of modern homotopy theory. A call for articles was made on the occasion of an emphasis semester organized by the Centre de Recerca Matemtica in Bellaterra (Barcelona) in 1998. The main topics treated in the book include abstract features of stable and unstable homotopy, homotopical localizations, p-compact groups, H-spaces, classifying spaces for proper actions, cohomology of discrete groups, K-theory and other generalized cohomology theories, configuration spaces, and Lusternik-Schnirelmann category. The book is addressed to all mathematicians interested in homotopy theory and in geometric aspects of group theory. New research directions in topology are highlighted. Moreover, this informative and educational book serves as a welcome reference for many new results and recent methods.
Publisher: Birkhäuser
ISBN: 3034883129
Category : Mathematics
Languages : en
Pages : 413
Book Description
This book contains a collection of articles summarizing the state of knowledge in a large portion of modern homotopy theory. A call for articles was made on the occasion of an emphasis semester organized by the Centre de Recerca Matemtica in Bellaterra (Barcelona) in 1998. The main topics treated in the book include abstract features of stable and unstable homotopy, homotopical localizations, p-compact groups, H-spaces, classifying spaces for proper actions, cohomology of discrete groups, K-theory and other generalized cohomology theories, configuration spaces, and Lusternik-Schnirelmann category. The book is addressed to all mathematicians interested in homotopy theory and in geometric aspects of group theory. New research directions in topology are highlighted. Moreover, this informative and educational book serves as a welcome reference for many new results and recent methods.
Configuration Spaces
Author: Filippo Callegaro
Publisher: Springer
ISBN: 3319315803
Category : Mathematics
Languages : en
Pages : 385
Book Description
This book collects the scientific contributions of a group of leading experts who took part in the INdAM Meeting held in Cortona in September 2014. With combinatorial techniques as the central theme, it focuses on recent developments in configuration spaces from various perspectives. It also discusses their applications in areas ranging from representation theory, toric geometry and geometric group theory to applied algebraic topology.
Publisher: Springer
ISBN: 3319315803
Category : Mathematics
Languages : en
Pages : 385
Book Description
This book collects the scientific contributions of a group of leading experts who took part in the INdAM Meeting held in Cortona in September 2014. With combinatorial techniques as the central theme, it focuses on recent developments in configuration spaces from various perspectives. It also discusses their applications in areas ranging from representation theory, toric geometry and geometric group theory to applied algebraic topology.
The Geometry and Topology of Coxeter Groups
Author: Michael Davis
Publisher: Princeton University Press
ISBN: 0691131384
Category : Mathematics
Languages : en
Pages : 601
Book Description
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
Publisher: Princeton University Press
ISBN: 0691131384
Category : Mathematics
Languages : en
Pages : 601
Book Description
The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book. The book explains a theorem of Moussong that demonstrates that a polyhedral metric on this cell complex is nonpositively curved, meaning that Coxeter groups are "CAT(0) groups." The book describes the reflection group trick, one of the most potent sources of examples of aspherical manifolds. And the book discusses many important topics in geometric group theory and topology, including Hopf's theory of ends; contractible manifolds and homology spheres; the Poincaré Conjecture; and Gromov's theory of CAT(0) spaces and groups. Finally, the book examines connections between Coxeter groups and some of topology's most famous open problems concerning aspherical manifolds, such as the Euler Characteristic Conjecture and the Borel and Singer conjectures.
The Geometry of Iterated Loop Spaces
Author: J.P. May
Publisher: Springer
ISBN: 9783540059042
Category : Mathematics
Languages : en
Pages : 175
Book Description
Publisher: Springer
ISBN: 9783540059042
Category : Mathematics
Languages : en
Pages : 175
Book Description
Topology and Robotics
Author: Michael Farber
Publisher: American Mathematical Soc.
ISBN: 0821842463
Category : Mathematics
Languages : en
Pages : 202
Book Description
Ever since the literary works of Capek and Asimov, mankind has been fascinated by the idea of robots. Modern research in robotics reveals that along with many other branches of mathematics, topology has a fundamental role to play in making these grand ideas a reality. This volume summarizes recent progress in the field of topological robotics--a new discipline at the crossroads of topology, engineering and computer science. Currently, topological robotics is developing in two main directions. On one hand, it studies pure topological problems inspired by robotics and engineering. On the other hand, it uses topological ideas, topological language, topological philosophy, and specially developed tools of algebraic topology to solve problems of engineering and computer science. Examples of research in both these directions are given by articles in this volume, which is designed to be a mixture of various interesting topics of pure mathematics and practical engineering.
Publisher: American Mathematical Soc.
ISBN: 0821842463
Category : Mathematics
Languages : en
Pages : 202
Book Description
Ever since the literary works of Capek and Asimov, mankind has been fascinated by the idea of robots. Modern research in robotics reveals that along with many other branches of mathematics, topology has a fundamental role to play in making these grand ideas a reality. This volume summarizes recent progress in the field of topological robotics--a new discipline at the crossroads of topology, engineering and computer science. Currently, topological robotics is developing in two main directions. On one hand, it studies pure topological problems inspired by robotics and engineering. On the other hand, it uses topological ideas, topological language, topological philosophy, and specially developed tools of algebraic topology to solve problems of engineering and computer science. Examples of research in both these directions are given by articles in this volume, which is designed to be a mixture of various interesting topics of pure mathematics and practical engineering.
The Homology of Iterated Loop Spaces
Author: F. R. Cohen
Publisher: Springer
ISBN: 3540379851
Category : Mathematics
Languages : en
Pages : 501
Book Description
Publisher: Springer
ISBN: 3540379851
Category : Mathematics
Languages : en
Pages : 501
Book Description
Algebraic Topology
Author: Allen Hatcher
Publisher: Cambridge University Press
ISBN: 9780521795401
Category : Mathematics
Languages : en
Pages : 572
Book Description
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.
Publisher: Cambridge University Press
ISBN: 9780521795401
Category : Mathematics
Languages : en
Pages : 572
Book Description
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.
Braids and Coverings
Author: Vagn Lundsgaard Hansen
Publisher: Cambridge University Press
ISBN: 9780521387576
Category : Mathematics
Languages : en
Pages : 208
Book Description
Essays develop the elementary theory of Artin Braid groups geometrically and via homotopy theory, discuss the link between knot theory and the combinatorics of braid groups through Markou's Theorem and investigate polynomial covering maps.
Publisher: Cambridge University Press
ISBN: 9780521387576
Category : Mathematics
Languages : en
Pages : 208
Book Description
Essays develop the elementary theory of Artin Braid groups geometrically and via homotopy theory, discuss the link between knot theory and the combinatorics of braid groups through Markou's Theorem and investigate polynomial covering maps.
Braids
Author: A. Jon Berrick
Publisher: World Scientific
ISBN: 9814291412
Category : Mathematics
Languages : en
Pages : 414
Book Description
Tutorial on the braid groups / Dale Rolfsen -- Simplicial objects and homotopy groups / Jie Wu -- Introduction to configuration spaces and their applications / Frederick R. Cohen -- Configuration spaces, braids, and robotics / Robert Ghrist -- Braids and magnetic fields / Mitchell A. Berger -- Braid group cryptography / David Garber
Publisher: World Scientific
ISBN: 9814291412
Category : Mathematics
Languages : en
Pages : 414
Book Description
Tutorial on the braid groups / Dale Rolfsen -- Simplicial objects and homotopy groups / Jie Wu -- Introduction to configuration spaces and their applications / Frederick R. Cohen -- Configuration spaces, braids, and robotics / Robert Ghrist -- Braids and magnetic fields / Mitchell A. Berger -- Braid group cryptography / David Garber