Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces PDF Author: Peter Buser
Publisher: Springer Science & Business Media
ISBN: 0817649921
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.

Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces PDF Author: Peter Buser
Publisher: Springer Science & Business Media
ISBN: 0817649921
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.

Geometry of Riemann Surfaces

Geometry of Riemann Surfaces PDF Author: William J. Harvey
Publisher: Cambridge University Press
ISBN: 0521733073
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
Original research and expert surveys on Riemann surfaces.

Spectral Geometry

Spectral Geometry PDF Author: Alex Barnett
Publisher: American Mathematical Soc.
ISBN: 0821853198
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
This volume contains the proceedings of the International Conference on Spectral Geometry, held July 19-23, 2010, at Dartmouth College, Dartmouth, New Hampshire. Eigenvalue problems involving the Laplace operator on manifolds have proven to be a consistently fertile area of geometric analysis with deep connections to number theory, physics, and applied mathematics. Key questions include the measures to which eigenfunctions of the Laplacian on a Riemannian manifold condense in the limit of large eigenvalue, and the extent to which the eigenvalues and eigenfunctions of a manifold encode its geometry. In this volume, research and expository articles, including those of the plenary speakers Peter Sarnak and Victor Guillemin, address the flurry of recent progress in such areas as quantum unique ergodicity, isospectrality, semiclassical measures, the geometry of nodal lines of eigenfunctions, methods of numerical computation, and spectra of quantum graphs. This volume also contains mini-courses on spectral theory for hyperbolic surfaces, semiclassical analysis, and orbifold spectral geometry that prepared the participants, especially graduate students and young researchers, for conference lectures.

Geometry Revealed

Geometry Revealed PDF Author: Marcel Berger
Publisher: Springer Science & Business Media
ISBN: 3540709975
Category : Mathematics
Languages : en
Pages : 840

Get Book Here

Book Description
Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces, convex sets, etc., crucial ideas and above all abstract concepts needed for attaining the results are elucidated. These are conceptual notions, each built "above" the preceding and permitting an increase in abstraction, represented metaphorically by Jacob's ladder with its rungs: the 'ladder' in the Old Testament, that angels ascended and descended... In all this, the aim of the book is to demonstrate to readers the unceasingly renewed spirit of geometry and that even so-called "elementary" geometry is very much alive and at the very heart of the work of numerous contemporary mathematicians. It is also shown that there are innumerable paths yet to be explored and concepts to be created. The book is visually rich and inviting, so that readers may open it at random places and find much pleasure throughout according their own intuitions and inclinations. Marcel Berger is t he author of numerous successful books on geometry, this book once again is addressed to all students and teachers of mathematics with an affinity for geometry.

Progress in Inverse Spectral Geometry

Progress in Inverse Spectral Geometry PDF Author: Stig I. Andersson
Publisher: Birkhäuser
ISBN: 3034889380
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
Most polynomial growth on every half-space Re (z) ::::: c. Moreover, Op(t) depends holomorphically on t for Re t> O. General references for much of the material on the derivation of spectral functions, asymptotic expansions and analytic properties of spectral functions are [A-P-S] and [Sh], especially Chapter 2. To study the spectral functions and their relation to the geometry and topology of X, one could, for example, take the natural associated parabolic problem as a starting point. That is, consider the 'heat equation': (%t + p) u(x, t) = 0 { u(x, O) = Uo(x), tP which is solved by means of the (heat) semi group V(t) = e- ; namely, u(·, t) = V(t)uoU· Assuming that V(t) is of trace class (which is guaranteed, for instance, if P has a positive principal symbol), it has a Schwartz kernel K E COO(X x X x Rt, E* ®E), locally given by 00 K(x, y; t) = L>-IAk(~k ® 'Pk)(X, y), k=O for a complete set of orthonormal eigensections 'Pk E COO(E). Taking the trace, we then obtain: 00 tA Op(t) = trace(V(t)) = 2::>- k. k=O Now, using, e. g., the Dunford calculus formula (where C is a suitable curve around a(P)) as a starting point and the standard for malism of pseudodifferential operators, one easily derives asymptotic expansions for the spectral functions, in this case for Op.

Riemannian Geometry

Riemannian Geometry PDF Author: Isaac Chavel
Publisher: Cambridge University Press
ISBN: 9780521485784
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
This book provides an introduction to Riemannian geometry, the geometry of curved spaces. Its main theme is the effect of the curvature of these spaces on the usual notions of geometry, angles, lengths, areas, and volumes, and those new notions and ideas motivated by curvature itself. Isoperimetric inequalities--the interplay of curvature with volume of sets and the areas of their boundaries--is reviewed along with other specialized classical topics. A number of completely new themes are created by curvature: they include local versus global geometric properties, that is, the interaction of microscopic behavior of the geometry with the macroscopic structure of the space. Also featured is an ambitious "Notes and Exercises" section for each chapter that will develop and enrich the reader's appetite and appreciation for the subject.

Spectral Analysis in Geometry and Number Theory

Spectral Analysis in Geometry and Number Theory PDF Author: Motoko Kotani
Publisher: American Mathematical Soc.
ISBN: 0821842692
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
This volume is an outgrowth of an international conference in honor of Toshikazu Sunada on the occasion of his sixtieth birthday. The conference took place at Nagoya University, Japan, in 2007. Sunada's research covers a wide spectrum of spectral analysis, including interactions among geometry, number theory, dynamical systems, probability theory and mathematical physics. Readers will find papers on trace formulae, isospectral problems, zeta functions, quantum ergodicity, random waves, discrete geometric analysis, value distribution, and semiclassical analysis. This volume also contains an article that presents an overview of Sunada's work in mathematics up to the age of sixty.

Geometric and Computational Spectral Theory

Geometric and Computational Spectral Theory PDF Author: Alexandre Girouard
Publisher: American Mathematical Soc.
ISBN: 147042665X
Category : Mathematics
Languages : en
Pages : 298

Get Book Here

Book Description
A co-publication of the AMS and Centre de Recherches Mathématiques The book is a collection of lecture notes and survey papers based on the mini-courses given by leading experts at the 2015 Séminaire de Mathématiques Supérieures on Geometric and Computational Spectral Theory, held from June 15–26, 2015, at the Centre de Recherches Mathématiques, Université de Montréal, Montréal, Quebec, Canada. The volume covers a broad variety of topics in spectral theory, highlighting its connections to differential geometry, mathematical physics and numerical analysis, bringing together the theoretical and computational approaches to spectral theory, and emphasizing the interplay between the two.

Riemannian Geometry

Riemannian Geometry PDF Author: Sylvestre Gallot
Publisher: Springer Science & Business Media
ISBN: 9783540204930
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
This book covers the topics of differential manifolds, Riemannian metrics, connections, geodesics and curvature, with special emphasis on the intrinsic features of the subject. It treats in detail classical results on the relations between curvature and topology. The book features numerous exercises with full solutions and a series of detailed examples are picked up repeatedly to illustrate each new definition or property introduced.

Handbook of Teichmüller Theory

Handbook of Teichmüller Theory PDF Author: Athanase Papadopoulos
Publisher: European Mathematical Society
ISBN: 9783037190296
Category : Mathematics
Languages : en
Pages : 812

Get Book Here

Book Description
The Teichmuller space of a surface was introduced by O. Teichmuller in the 1930s. It is a basic tool in the study of Riemann's moduli spaces and the mapping class groups. These objects are fundamental in several fields of mathematics, including algebraic geometry, number theory, topology, geometry, and dynamics. The original setting of Teichmuller theory is complex analysis. The work of Thurston in the 1970s brought techniques of hyperbolic geometry to the study of Teichmuller space and its asymptotic geometry. Teichmuller spaces are also studied from the point of view of the representation theory of the fundamental group of the surface in a Lie group $G$, most notably $G=\mathrm{PSL}(2,\mathbb{R})$ and $G=\mathrm{PSL}(2,\mathbb{C})$. In the 1980s, there evolved an essentially combinatorial treatment of the Teichmuller and moduli spaces involving techniques and ideas from high-energy physics, namely from string theory. The current research interests include the quantization of Teichmuller space, the Weil-Petersson symplectic and Poisson geometry of this space as well as gauge-theoretic extensions of these structures. The quantization theories can lead to new invariants of hyperbolic 3-manifolds. The purpose of this handbook is to give a panorama of some of the most important aspects of Teichmuller theory. The handbook should be useful to specialists in the field, to graduate students, and more generally to mathematicians who want to learn about the subject. All the chapters are self-contained and have a pedagogical character. They are written by leading experts in the subject.