Author: Daniel S. Freed
Publisher: American Mathematical Soc.
ISBN: 9780821886830
Category : Science
Languages : en
Pages : 476
Book Description
The first title in a new series, this book explores topics from classical and quantum mechanics and field theory. The material is presented at a level between that of a textbook and research papers making it ideal for graduate students. The book provides an entree into a field that promises to remain exciting and important for years to come.
Geometry and Quantum Field Theory
Author: Daniel S. Freed
Publisher: American Mathematical Soc.
ISBN: 9780821886830
Category : Science
Languages : en
Pages : 476
Book Description
The first title in a new series, this book explores topics from classical and quantum mechanics and field theory. The material is presented at a level between that of a textbook and research papers making it ideal for graduate students. The book provides an entree into a field that promises to remain exciting and important for years to come.
Publisher: American Mathematical Soc.
ISBN: 9780821886830
Category : Science
Languages : en
Pages : 476
Book Description
The first title in a new series, this book explores topics from classical and quantum mechanics and field theory. The material is presented at a level between that of a textbook and research papers making it ideal for graduate students. The book provides an entree into a field that promises to remain exciting and important for years to come.
Geometric and Topological Methods for Quantum Field Theory
Author: Hernan Ocampo
Publisher: Cambridge University Press
ISBN: 113948673X
Category : Science
Languages : en
Pages : 435
Book Description
Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.
Publisher: Cambridge University Press
ISBN: 113948673X
Category : Science
Languages : en
Pages : 435
Book Description
Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.
Geometric Approaches to Quantum Field Theory
Author: Kieran Finn
Publisher: Springer Nature
ISBN: 3030852695
Category : Science
Languages : en
Pages : 212
Book Description
The ancient Greeks believed that everything in the Universe should be describable in terms of geometry. This thesis takes several steps towards realising this goal by introducing geometric descriptions of systems such as quantum gravity, fermionic particles and the origins of the Universe itself. The author extends the applicability of previous work by Vilkovisky, DeWitt and others to include theories with spin 1⁄2 and spin 2 degrees of freedom. In addition, he introduces a geometric description of the potential term in a quantum field theory through a process known as the Eisenhart lift. Finally, the methods are applied to the theory of inflation, where they show how geometry can help answer a long-standing question about the initial conditions of the Universe. This publication is aimed at graduate and advanced undergraduate students and provides a pedagogical introduction to the exciting topic of field space covariance and the complete geometrization of quantum field theory.
Publisher: Springer Nature
ISBN: 3030852695
Category : Science
Languages : en
Pages : 212
Book Description
The ancient Greeks believed that everything in the Universe should be describable in terms of geometry. This thesis takes several steps towards realising this goal by introducing geometric descriptions of systems such as quantum gravity, fermionic particles and the origins of the Universe itself. The author extends the applicability of previous work by Vilkovisky, DeWitt and others to include theories with spin 1⁄2 and spin 2 degrees of freedom. In addition, he introduces a geometric description of the potential term in a quantum field theory through a process known as the Eisenhart lift. Finally, the methods are applied to the theory of inflation, where they show how geometry can help answer a long-standing question about the initial conditions of the Universe. This publication is aimed at graduate and advanced undergraduate students and provides a pedagogical introduction to the exciting topic of field space covariance and the complete geometrization of quantum field theory.
Quantum Geometry
Author: Jan Ambjørn
Publisher: Cambridge University Press
ISBN: 0521461677
Category : Science
Languages : en
Pages : 377
Book Description
Describes random geometry and applications to strings, quantum gravity, topological field theory and membrane physics.
Publisher: Cambridge University Press
ISBN: 0521461677
Category : Science
Languages : en
Pages : 377
Book Description
Describes random geometry and applications to strings, quantum gravity, topological field theory and membrane physics.
Topology, Geometry and Quantum Field Theory
Author: Ulrike Luise Tillmann
Publisher: Cambridge University Press
ISBN: 9780521540490
Category : Mathematics
Languages : en
Pages : 596
Book Description
The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.
Publisher: Cambridge University Press
ISBN: 9780521540490
Category : Mathematics
Languages : en
Pages : 596
Book Description
The symposium held in honour of the 60th birthday of Graeme Segal brought together leading physicists and mathematicians. Its topics were centred around string theory, M-theory, and quantum gravity on the one hand, and K-theory, elliptic cohomology, quantum cohomology and string topology on the other. Geometry and quantum physics developed in parallel since the recognition of the central role of non-abelian gauge theory in elementary particle physics in the late seventies and the emerging study of super-symmetry and string theory. With its selection of survey and research articles these proceedings fulfil the dual role of reporting on developments in the field and defining directions for future research. For the first time Graeme Segal's manuscript 'The definition of Conformal Field Theory' is published, which has been greatly influential over more than ten years. An introduction by the author puts it into the present context.
Quantum Physics and Geometry
Author: Edoardo Ballico
Publisher: Springer
ISBN: 3030061221
Category : Science
Languages : en
Pages : 177
Book Description
This book collects independent contributions on current developments in quantum information theory, a very interdisciplinary field at the intersection of physics, computer science and mathematics. Making intense use of the most advanced concepts from each discipline, the authors give in each contribution pedagogical introductions to the main concepts underlying their present research and present a personal perspective on some of the most exciting open problems. Keeping this diverse audience in mind, special efforts have been made to ensure that the basic concepts underlying quantum information are covered in an understandable way for mathematical readers, who can find there new open challenges for their research. At the same time, the volume can also be of use to physicists wishing to learn advanced mathematical tools, especially of differential and algebraic geometric nature.
Publisher: Springer
ISBN: 3030061221
Category : Science
Languages : en
Pages : 177
Book Description
This book collects independent contributions on current developments in quantum information theory, a very interdisciplinary field at the intersection of physics, computer science and mathematics. Making intense use of the most advanced concepts from each discipline, the authors give in each contribution pedagogical introductions to the main concepts underlying their present research and present a personal perspective on some of the most exciting open problems. Keeping this diverse audience in mind, special efforts have been made to ensure that the basic concepts underlying quantum information are covered in an understandable way for mathematical readers, who can find there new open challenges for their research. At the same time, the volume can also be of use to physicists wishing to learn advanced mathematical tools, especially of differential and algebraic geometric nature.
Operators, Geometry and Quanta
Author: Dmitri Fursaev
Publisher: Springer Science & Business Media
ISBN: 9400702051
Category : Science
Languages : en
Pages : 294
Book Description
This book gives a detailed and self-contained introduction into the theory of spectral functions, with an emphasis on their applications to quantum field theory. All methods are illustrated with applications to specific physical problems from the forefront of current research, such as finite-temperature field theory, D-branes, quantum solitons and noncommutativity. In the first part of the book, necessary background information on differential geometry and quantization, including less standard material, is collected. The second part of the book contains a detailed description of main spectral functions and methods of their calculation. In the third part, the theory is applied to several examples (D-branes, quantum solitons, anomalies, noncommutativity). This book addresses advanced graduate students and researchers in mathematical physics with basic knowledge of quantum field theory and differential geometry. The aim is to prepare readers to use spectral functions in their own research, in particular in relation to heat kernels and zeta functions.
Publisher: Springer Science & Business Media
ISBN: 9400702051
Category : Science
Languages : en
Pages : 294
Book Description
This book gives a detailed and self-contained introduction into the theory of spectral functions, with an emphasis on their applications to quantum field theory. All methods are illustrated with applications to specific physical problems from the forefront of current research, such as finite-temperature field theory, D-branes, quantum solitons and noncommutativity. In the first part of the book, necessary background information on differential geometry and quantization, including less standard material, is collected. The second part of the book contains a detailed description of main spectral functions and methods of their calculation. In the third part, the theory is applied to several examples (D-branes, quantum solitons, anomalies, noncommutativity). This book addresses advanced graduate students and researchers in mathematical physics with basic knowledge of quantum field theory and differential geometry. The aim is to prepare readers to use spectral functions in their own research, in particular in relation to heat kernels and zeta functions.
Quantum Field Theory and Noncommutative Geometry
Author: Ursula Carow-Watamura
Publisher: Springer Science & Business Media
ISBN: 9783540239000
Category : Mathematics
Languages : en
Pages : 316
Book Description
This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field.
Publisher: Springer Science & Business Media
ISBN: 9783540239000
Category : Mathematics
Languages : en
Pages : 316
Book Description
This volume reflects the growing collaboration between mathematicians and theoretical physicists to treat the foundations of quantum field theory using the mathematical tools of q-deformed algebras and noncommutative differential geometry. A particular challenge is posed by gravity, which probably necessitates extension of these methods to geometries with minimum length and therefore quantization of space. This volume builds on the lectures and talks that have been given at a recent meeting on "Quantum Field Theory and Noncommutative Geometry." A considerable effort has been invested in making the contributions accessible to a wider community of readers - so this volume will not only benefit researchers in the field but also postgraduate students and scientists from related areas wishing to become better acquainted with this field.
Geometry, Topology and Quantum Field Theory
Author: P. Bandyopadhyay
Publisher: Springer Science & Business Media
ISBN: 9401716978
Category : Science
Languages : en
Pages : 225
Book Description
This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap.
Publisher: Springer Science & Business Media
ISBN: 9401716978
Category : Science
Languages : en
Pages : 225
Book Description
This is a monograph on geometrical and topological features which arise in quantum field theory. It is well known that when a chiral fermion interacts with a gauge field we have chiral anomaly which corresponds to the fact that divergence of the axial vector current does not vanish. It is observed that this is related to certain topological features associated with the fermion and leads to the realization of the topological origin of fermion number as well as the Berry phase. The role of gauge fields in the quantization procedure has its implications in these topological features of a fermion and helps us to consider a massive fermion as a soliton (skyrrnion). In this formalism chiral anomaly is found to be responsible for mass generation. This has its relevance in electroweak theory where it is observed that weak interaction gauge bosons attain mass topologically. The geometrical feature of a skyrmion also helps us to realize the internal symmetry of hadrons from reflection group. Finally it has been shown that noncommutative geometry where the space time manifold is taken to be X = M x Zz has its relevance in the description of a massive 4 fermion as a skyrmion when the discrete space is considered as the internal space and the symmetry breaking leads to chiral anomaly. In chap. l preliminary mathematical formulations related to the spinor structure have been discussed. In chap.
Symplectic Geometry and Quantum Mechanics
Author: Maurice A. de Gosson
Publisher: Springer Science & Business Media
ISBN: 3764375752
Category : Mathematics
Languages : en
Pages : 375
Book Description
This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.
Publisher: Springer Science & Business Media
ISBN: 3764375752
Category : Mathematics
Languages : en
Pages : 375
Book Description
This book offers a complete discussion of techniques and topics intervening in the mathematical treatment of quantum and semi-classical mechanics. It starts with a very readable introduction to symplectic geometry. Many topics are also of genuine interest for pure mathematicians working in geometry and topology.